Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
J Agric Food Chem ; 70(10): 3219-3227, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35254817

ABSTRACT

This study evaluates the comprehensive valorization of the byproducts derived from the two-phase olive oil elaboration process [i.e., olive washing water (OWW), olive oil washing water (OOWW), and olive mill solid waste (OMSW)] in a closed-loop process. Initially, the microalga Raphidocelis subcapitata was grown using a mixture of OWW and OOWW as the culture medium, allowing phosphate, nitrate, sugars, and soluble chemical oxygen demand removal. In a second step, the microalgal biomass grown in the mixture of washing waters was used as a co-substrate together with OMSW for an anaerobic co-digestion process. The anaerobic co-digestion of the combination of 75% OMSW-25% R. subcapitata enhanced the methane yield by 7.0 and 64.5% compared to the anaerobic digestion of the OMSW and R. subcapitata individually. This schedule of operation allowed for integration of all of the byproducts generated from the two-phase olive oil elaboration process in a full valorization system and the establishment of a circular economy concept for the olive oil industry.


Subject(s)
Microalgae , Olea , Anaerobiosis , Digestion , Industrial Waste/analysis , Methane , Solid Waste , Wastewater
2.
Front Microbiol ; 9: 1641, 2018.
Article in English | MEDLINE | ID: mdl-30083147

ABSTRACT

The table olive industry produces a high quantity of wastewater annually. These wastewaters are very problematic because of their characteristics of high organic matter, high phenolic content, high salinity and conductivity. The quantities in which they are produced are also a serious problem. The worldwide production of table olives reached 2,550,000 tons in the last five campaigns, with the European Union contributing to 32% of total production. The problem of these wastewaters is focused on the Mediterranean area where the highest quantity of table olives is produced and to a lesser extent on the United States and South America. Countries like Spain produce around 540,000 tons of these wastewaters. At present, there is no standard treatment for these wastewaters with acceptable results and which is applied in the industry. Currently, the most common treatment is the storage of these wastewaters in large evaporation ponds where, during the dry season, the wastewater disappears due to evaporation. This is not a solution as the evaporation ponds depend completely on the climatology and have a high number of associated problems, such as bad odors, insect proliferation and the contamination of underground aquifers. Different studies have been carried out on table olive wastewater treatment, but the reality is that at the industrial level, none has been successfully applied. New and promising treatments are needed. The current review analyzes the situation of table olive wastewater treatment and the promising technologies for the future.

3.
Electron. j. biotechnol ; 11(2): 12-19, Apr. 2008. ilus, graf, tab
Article in English | LILACS | ID: lil-522201

ABSTRACT

This paper presents the use of an effluent derived from two-stage anaerobic digestion of two-phase olive mill solid waste (OMSW) as a substrate for the production of Chlorella zofingiensis in batch mode. Chlorella zofingiensis when grown autotrophycally can accumulate significant quantities of valuable carotenoids which are used as an additive in fish and poultry farming, as colorants in foods and in health care products. It was found that two-phase OMSW previously treated by two-stage anaerobic digestion and further sterilized may be used as a culture medium for the microalgae Chlorella zofingiensis. Typical growth curves were obtained using both the above-mentioned anaerobic effluent and a synthetic medium. Total chemical oxygen demand (TCOD) and soluble chemical oxygen demand (SCOD) removals of 37 percent and 45 percent respectively were achieved in batch experiments after 11 days’ operation time. The specific growth rate was lower when the treated effluent was used as the feed substrate (0.02 h-1) in comparison to the synthetic medium (0.03 h-1). The specific growth rates of the exponential phases were determined by using a first-order kinetic model applied to chlorophyll a (Ca) and total chlorophyll (TC) concentrations, as indirect measurements of the microalgae concentration. It was concluded that the effluent from two-stage anaerobic digestion of two-phase OMSW constituted an appropriate culture medium for the growth of Chlorella zofingiensis, providing a simple technology feasible for producing a very useful product for animal feeding.


Subject(s)
Anaerobic Digestion , Chlorella , Solid Waste , Vegetable Fats , Carotenoids , Kinetics , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...