Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0289188, 2024.
Article in English | MEDLINE | ID: mdl-38683803

ABSTRACT

To control the SARS-CoV-2 pandemic, healthcare systems have focused on ramping up their capacity for epidemiological surveillance through viral whole genome sequencing. In this paper, we tested the performance of two protocols of SARS-CoV-2 nucleic acid enrichment, an amplicon enrichment using different versions of the ARTIC primer panel and a hybrid-capture method using KAPA RNA Hypercap. We focused on the challenge of the Omicron variant sequencing, the advantages of automated library preparation and the influence of the bioinformatic analysis in the final consensus sequence. All 94 samples were sequenced using Illumina iSeq 100 and analysed with two bioinformatic pipelines: a custom-made pipeline and an Illumina-owned pipeline. We were unsuccessful in sequencing six samples using the capture enrichment due to low reads. On the other hand, amplicon dropout and mispriming caused the loss of mutation G21987A and the erroneous addition of mutation T15521A respectively using amplicon enrichment. Overall, we found high sequence agreement regardless of method of enrichment, bioinformatic pipeline or the use of automation for library preparation in eight different SARS-CoV-2 variants. Automation and the use of a simple app for bioinformatic analysis can simplify the genotyping process, making it available for more diagnostic facilities and increasing global vigilance.


Subject(s)
COVID-19 , High-Throughput Nucleotide Sequencing , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Humans , COVID-19/epidemiology , COVID-19/virology , High-Throughput Nucleotide Sequencing/methods , Genome, Viral , RNA, Viral/genetics , Mutation , Epidemiological Monitoring , Computational Biology/methods , Whole Genome Sequencing/methods
2.
Antibiotics (Basel) ; 12(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37760768

ABSTRACT

Streptococcus downii is a recently reported bacterial species of oral origin, with inhibitory capacity against Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula and Aggregatibacter actinomycetemcomitans, which confers upon it the potential of being an oral probiotic. The aim of the present study was to identify the potential mechanisms by which S. downii exerts its inhibitory effect on S. mutans. To this end, the study assessed the consumption of glucose and proteins available in the culture medium, the modification of the pH, the production of short-chain fatty acids, the changes in the protein panel of the inhibition halo, the production of hydrogen peroxide and the effect of proteinase K. There were no differences in the glucose values or in the protein content of the medium, but there was a reduction in pH (with no effect on the growth of S. mutans). Significant increases were detected in the levels of lactic and formic acid (with no effect on the growth of S. mutans), as well as changes in the peptide panel (with no effect on the growth of S. mutans). The inhibitory effect was maintained in the presence of peroxidase but disappeared after adding proteinase K. Based on these results, it is suggested that the main mechanism of inhibition of S. downii against S. mutans is the production of bacteriocins.

SELECTION OF CITATIONS
SEARCH DETAIL
...