Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Mol Biol Rep ; 51(1): 285, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324050

ABSTRACT

BACKGROUND: Temperament is an important production trait in cattle and multiple strategies had been developed to generate molecular markers to assist animal selection. As nonsynonymous single nucleotide polymorphisms are markers with the potential to affect gene functions, they could be useful to predict phenotypic effects. Genetic selection of less stress-responsive, temperamental animals is desirable from an economic and welfare point of view. METHODS AND RESULTS: Two nonsynonymous single nucleotide polymorphisms identified in HTR1B and SLC18A2 candidate genes for temperament were analyzed in silico to determine their effects on protein structure. Those nsSNPs allowing changes in proteins were selected for a temperament association analysis in a Brahman population. Transversion effects on protein structure were evaluated in silico for each amino acid change model, revealing structural changes in the proteins of the HTR1B and SLC18A2 genes. The selected nsSNPs were genotyped in a Brahman population (n = 138), and their genotypic effects on three temperament traits were analyzed: exit velocity, pen score, and temperament score. Only the SNP rs209984404-HTR1B (C/A) showed a significant association (P = 0.0144) with pen score. The heterozygous genotype showed a pen score value 1.17 points lower than that of the homozygous CC genotype. CONCLUSION: The results showed that in silico analysis could direct the selection of nsSNPs with the potential to change the protein. Non-synonymous single nucleotide polymorphisms causing structural changes and reduced protein stability were identified. Only rs209984404-HTR1B shows that the allele affecting protein stability was associated with the genotype linked to docility in cattle.


Subject(s)
Polymorphism, Single Nucleotide , Temperament , Cattle , Animals , Genotype , Alleles , Phenotype
2.
EFSA J ; 22(2): e8563, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38322232

ABSTRACT

Quillaia extract (E 999) was re-evaluated in 2019 by the EFSA Panel on Food Additives and Flavourings (FAF). EFSA derived an acceptable daily intake (ADI) of 3 mg saponins/kg bw per day for E 999. Following a European Commission call for data to submit data to fill the data gaps, the present follow-up opinion assesses data provided by interested business operators (IBOs) to support an amendment of the EU specifications for E 999. Additionally, this opinion deals with the assessment of the proposed extension of use for E 999 in food supplements supplied in a solid and liquid form, excluding food supplements for infants and young children and, as a carrier in botanical nutrients. The Panel concluded that the proposed extension of use, if authorised, could result in an exceedance of the ADI at the maximum of the ranges of the mean for children, adolescents and the elderly, and for all populations at the 95th percentile. An additional proposed extension of use for E 999 to be used as a carrier for glazing agents on entire fresh fruits and vegetables has been received. Since no information on the proposed use levels of E 999 on a saponins content basis has been provided by this applicant, the Panel was not able to evaluate the safety of this extension of use. Considering the technical data submitted, the Panel recommended some modifications of the existing EU specifications for E 999, mainly to lower the limits for lead, mercury and arsenic and to include a maximum limit for cadmium and for calcium oxalate. The Panel also recommended that the limits would be expressed on a saponins basis. The Panel proposed to revise the definition of E 999 to better describe the composition in a qualitative way.

3.
EFSA J ; 21(12): e8430, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125972

ABSTRACT

This opinion addresses the re-evaluation of erythritol (E 968) as food additive and an application for its exemption from the laxative warning label requirement as established under Regulation (EU) No 1169/2011. Erythritol is a polyol obtained by fermentation with Moniliella pollinis BC or Moniliella megachiliensis KW3-6, followed by purifications and drying. Erythritol is readily and dose-dependently absorbed in humans and can be metabolised to erythronate to a small extent. Erythritol is then excreted unchanged in the urine. It does not raise concerns regarding genotoxicity. The dataset evaluated consisted of human interventional studies. The Panel considered that erythritol has the potential to cause diarrhoea in humans, which was considered adverse because its potential association with electrolyte and water imbalance. The lower bound of the range of no observed adverse effect levels (NOAELs) for diarrhoea of 0.5 g/kg body weight (bw) was identified as reference point. The Panel considered appropriate to set a numerical acceptable daily intake (ADI) at the level of the reference point. An ADI of 0.5 g/kg bw per day was considered by the Panel to be protective for the immediate laxative effect as well as potential chronic effects, secondary to diarrhoea. The highest mean and 95th percentile chronic exposure was in children (742 mg/kg bw per day) and adolescents (1532 mg/kg bw per day). Acute exposure was maximally 3531 mg/kg bw per meal for children at the 99th percentile. Overall, the Panel considered both dietary exposure assessments an overestimation. The Panel concluded that the exposure estimates for both acute and chronic dietary exposure to erythritol (E 968) were above the ADI, indicating that individuals with high intake may be at risk of experiencing adverse effects after single and repeated exposure. Concerning the new application, the Panel concluded that the available data do not support the proposal for exemption.

4.
EFSA J ; 21(7): e08110, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37476082

ABSTRACT

Glycerol esters of wood rosin (GEWR) (E 445) were re-evaluated in 2018. On the toxicity database and given the absence of reproductive and developmental toxicity data, the acceptable daily intake (ADI) of 12.5 mg/kg body weight (bw) per day for GEWR (E 445) established by the Scientific Committee on Food (SCF) in 1994 was considered temporary. The conclusions of the assessment were restricted to GEWR derived from Pinus palustris and Pinus elliottii and with a chemical composition in compliance with GEWR used in the toxicological testing. Following a European Commission call for data to submit data to fill the data gaps, the present follow-up opinion assesses data provided by interested business operators (IBOs). Considering the technical data submitted by IBOs, the EFSA Panel on Food Additives and Flavourings (FAF Panel) recommended some modifications of the existing EU specifications for E 445, mainly a revision of the definition of the food additive and lowering the limits for toxic elements. Considering the available toxicological database evaluated during the re-evaluation of E 445 by the ANS Panel in 2018, and the toxicological studies submitted by the IBOs, the Panel established an ADI of 10 mg/kg bw per day based on the no observed adverse effect level (NOAEL) of 976 mg/kg bw per day from the newly available dietary reproduction/developmental toxicity screening study in rats and applying an uncertainty factor of 100. Since GEWR from P. palustris and P. elliottii were tested in the toxicity studies considered to establish the ADI and in the absence of detailed information on the chemical composition (major constituents) in GEWR generated from other Pinus species, thus not allowing read across, the ADI is restricted to the GEWR (E 445) manufactured from P. palustris and P. elliottii. The Panel concluded that there was no safety concern for the use of GEWR (E 445), at either the maximum permitted levels or at the reported uses and use levels.

5.
EFSA J ; 21(7): e08103, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37502014

ABSTRACT

Indigo carmine (E 312) was re-evaluated in 2014 by the EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). The ANS Panel confirmed the acceptable daily intake (ADI) of 5 mg/kg body weight (bw) per day for indigo carmine allocated by JECFA (1975). The ANS Panel indicated that the ADI was applicable to a material with a purity of 93% pure colouring and manufactured using processes resulting in comparable residuals as material used in the Borzelleca et al. studies (1985, 1986) and Borzelleca and Hogan (1985) which were the basis for deriving the ADI. The ANS Panel considered that any extension of the ADI to indigo carmine of lower purity and/or manufactured using a different process would require new data to address the adverse effects on the testes observed in the Dixit and Goyal (2013) study. Following a European Commission call for data to submit data to fill the data gaps, an IBO submitted technical and toxicological data. Considering the technical data, the EFSA Panel on Food Additives and Flavourings (FAF Panel) recommended some modifications of the existing EU specifications for E 132, mainly to lower the limits for toxic elements. Considering the toxicological data, an IBO has submitted a 56-day dietary study to address the adverse effects on testes using a material with 88% purity. The results of this study submitted did not confirm the severe adverse effects observed in the Dixit and Goyal study. Considering all the available information, the Panel confirmed the ADI of 5 mg/kg bw per day for indigo carmine (E 132) disodium salts, meeting the proposed revisions of the specifications (85% minimum for the colouring matter). The Panel concluded that there is no safety concern for the use of indigo carmine (E 132) disodium salts at the reported use levels and submitted analytical data.

6.
EFSA J ; 21(7): e08106, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37522100

ABSTRACT

Calcium carbonate (E 170) was re-evaluated in 2011 by the former EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). As a follow-up to this assessment, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of calcium carbonate (E 170) for its uses as a food additive in food for infants below 16 weeks of age belonging to food category 13.1.5.1 (Dietary foods for infants for special medical purposes and special formulae for infants) and as carry over in line with Annex III, Part 5 Section B to Regulation (EC) No 1333/2008. In addition, the FAF Panel was requested to address the issues already identified during the re-evaluation of the food additive when used in food for the general population. The process involved the publication of a call for data to allow the interested business operators (IBOs) to provide the requested information to complete the risk assessment. The Panel concluded that there is no need for a numerical acceptable daily intake (ADI) for calcium carbonate and that, in principle, there are no safety concern with respect to the exposure to calcium carbonate per se at the currently reported uses and use levels in all age groups of the population, including infants below 16 weeks of age. With respect to the calcium intake resulting from the use of E 170 in food for the general population and infants < 16 weeks of age, the Panel concluded that it contributes only to a small part to the overall calcium dietary exposure. However, the unavoidable presence of aluminium in E 170 is of concern and should be addressed. In addition, the Panel concluded that the technical data provided by the IBO support further amendments of the specifications for E 170 laid down in Commission Regulation (EU) No 231/2012.

7.
EFSA J ; 21(5): e07951, 2023 May.
Article in English | MEDLINE | ID: mdl-37151988

ABSTRACT

Xanthan gum (E 415) was re-evaluated in 2017 by the former EFSA Panel on Food Additives and Nutrient sources added to Food. As a follow-up to that assessment, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of xanthan gum (E 415) for its uses as a food additive in food for infants below 16 weeks of age belonging to food category (FC) 13.1.5.1 (Dietary foods for infants for special medical purposes and special formulae for infants). In addition, the FAF Panel was requested to address the issues already identified during the re-evaluation of the food additive when used in food for the general population. The process involved the publication of a call for data to allow the interested business operators to provide the requested information to complete the risk assessment. The Panel concluded that the technical data provided by the interested business operators support an amendment of the specifications for E 415 laid down in Commission Regulation (EU) No 231/2012. Due to the low validity of the available clinical studies, the Panel concluded that a reference point could not be derived from them but the results of the available studies on neonatal piglets could serve to derive a reference point. The Panel calculated the margin of exposure for infants below 16 weeks of age consuming food for special medical purposes (FC 13.1.5.1) for the highest xanthan gum exposure and concluded that there are no safety concerns for the use of xanthan gum (E 415) as a food additive in FC 13.1.5.1.

8.
Genes (Basel) ; 14(5)2023 04 28.
Article in English | MEDLINE | ID: mdl-37239364

ABSTRACT

The 3' untranslated region has an important role in gene regulation through microRNAs, and it has been estimated that microRNAs regulate up to 50% of coding genes in mammals. With the aim of allelic variant identification of 3' untranslated region microRNA seed sites, the 3' untranslated region was searched for seed sites of four temperament-associated genes (CACNG4, EXOC4, NRXN3, and SLC9A4). The microRNA seed sites were predicted in the four genes, and the CACNG4 gene had the greatest number with 12 predictions. To search for variants affecting the predicted microRNA seed sites, the four 3' untranslated regions were re-sequenced in a Brahman cattle population. Eleven single nucleotide polymorphisms were identified in the CACNG4, and eleven in the SLC9A4. Rs522648682:T>G of the CACNG4 gene was located at the predicted seed site for bta-miR-191. Rs522648682:T>G evidenced an association with both exit velocity (p = 0.0054) and temperament score (p = 0.0097). The genotype TT had a lower mean exit velocity (2.93 ± 0.4 m/s) compared with the TG and GG genotypes (3.91 ± 0.46 m/s and 3.67 ± 0.46 m/s, respectively). The allele associated with the temperamental phenotype antagonizes the seed site, disrupting the bta-miR-191 recognition. The G allele of CACNG4-rs522648682 has the potential to influence bovine temperament through a mechanism associated with unspecific recognition of bta-miR-191.


Subject(s)
MicroRNAs , Cattle/genetics , Animals , MicroRNAs/genetics , 3' Untranslated Regions/genetics , Temperament , Genotype , Phenotype , Mammals/genetics
9.
EFSA J ; 21(4): e07961, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37089185

ABSTRACT

Sucrose esters of fatty acids (E 473) was re-evaluated in 2004 by the former EFSA Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC Panel). In addition, the former EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS Panel) issued scientific opinions on the safety of sucrose esters of fatty acids (E 473) in 2010, 2012 and 2018. As a follow-up to these assessments, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of sucrose esters of fatty acids (E 473) for its uses as food additive in food for infants below 16 weeks of age. In addition, the FAF Panel was requested to address the issues already identified by the EFSA AFC and ANS Panels when used in food for the general population. The process involved the publication of calls for data to allow the interested business operators to provide the requested information to complete the risk assessment. The Panel concluded that the technical data provided by the interested business operators support an amendment of the specifications for sucrose esters of fatty acids (E 473) laid down in Commission Regulation (EU) No 231/2012. According to the available information, E 473 is not used in food categories (FCs) 13.1.1 and 13.1.5.1, including all types of food for infants below 16 weeks of age, and in FC 13.1.5.2. As a consequence, an assessment of the safety for the uses of E 473 as food additive in these FCs and age group was not performed. When the updated exposure estimates considering the provided use levels for some food categories are taken into account the estimates of exposure to sucrose esters of fatty acids (E 473) exceeded the group acceptable daily intake (ADI) of 40 mg/kg body weight (bw) per day for many population groups.

10.
EFSA J ; 21(2): e07775, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36789355

ABSTRACT

Locust bean gum (E 410) was re-evaluated in 2017 by the former EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). As a follow-up to that assessment, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of locust bean gum (E 410) for its uses as a food additive in food for infants below 16 weeks of age belonging to food category 13.1.5.1 (Dietary foods for infants for special medical purposes and special formulae for infants). In addition, the FAF Panel was requested to address the issues already identified during the re-evaluation of the food additive when used in food for the general population, including the safety assessment for FC 13.1.5.1 and 13.1.5.2 (Dietary foods for babies and young children for special medical purposes as defined in directive 1999/21/EC). The process involved the publication of a call for data. Based on the received data, the Panel concluded that the technical data provided by the interested business operators support an amendment of the specifications for locust bean gum (E 410) laid down in Commission Regulation (EU) No 231/2012. The Panel identified a reference point of 1,400 mg/kg bw per day based on reduced blood zinc levels in a piglet study. It applied the margin of exposure (MoE) for the safety assessment of locust bean gum (E 410) when used as a food additive in FC 13.1.5.1 and 13.1.5.2. The Panel concluded that a MoE above 1 would not raise a safety concern. A MoE above 1 was obtained for some of the scenarios and exposure levels for infants. For toddlers (consumers only of food for special medical purposes), the MoE was above 1 for all exposure levels.

11.
EFSA J ; 20(12): e07665, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36514369

ABSTRACT

Sodium carboxy methyl cellulose (E 466) was re-evaluated in 2018 by the former EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). As a follow-up to this assessment, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of E 466 for its uses as a food additive in food for infants below 16 weeks of age belonging to food categories (FC) 13.1.5.1 (Dietary foods for infants for special medical purposes and special formulae for infants) in line with Regulation (EC) No 1333/2008. In addition, the FAF Panel was requested to address the issues already identified during the re-evaluation of the food additive when used in food for the general population, including the safety assessment for FC 13.1.5.1 and 13.1.5.2 (Dietary foods for babies and young children for special medical purposes as defined in directive 1999/21/EC). The process involved the publication of a call for data. Based on the received data, the Panel concluded that the technical data provided by the interested business operator support an amendment of the specifications for sodium carboxy methyl cellulose (E 466) laid down in Commission Regulation (EU) No 231/2012. The interested business operators declared that E 466 is not used in food for infants below 16 weeks of age and in FC 13.1.5.1. Due to the lack of data, an assessment has not been performed for this FC and age group. The interested business operators did not provide biological and toxicological data to support the uses of E 466 in FC 13.1.5.2. Due to the almost unchanged database compared to the situation before the call for data, the FAF Panel confirmed the previous EFSA ANS Panel conclusion according to which the available data did not allow for an adequate assessment of the safety of use of sodium carboxy methyl cellulose (E 466) in infants and young children consuming foods belonging to the FC 13.1.5.2. ©2022 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

12.
EFSA J ; 20(11): e07594, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36440381

ABSTRACT

Sulfur dioxide-sulfites (E 220-228) were re-evaluated in 2016, resulting in the setting of a temporary ADI of 0.7 mg SO2 equivalents/kg bw per day. Following a European Commission call for data, the present follow-up opinion assesses data provided by interested business operators (IBOs) and additional evidence identified in the publicly available literature. No new biological or toxicological data addressing the data gaps described in the re-evaluation were submitted by IBOs. Taking into account data identified from the literature search, the Panel concluded that there was no substantial reduction in the uncertainties previously identified in the re-evaluation. Therefore, the Panel considered that the available toxicity database was inadequate to derive an ADI and withdrew the current temporary group acceptable daily intake (ADI). A margin of exposure (MOE) approach was considered appropriate to assess the risk for these food additives. A lower confidence limit of the benchmark dose of 38 mg SO2 equivalents/kg bw per day, which is lower than the previous reference point of 70 mg SO2 equivalents/kg bw per day, was estimated based on prolonged visual evoked potential latency. An assessment factor of 80 was applied for the assessment of the MoE. At the estimated dietary exposures, when using a refined exposure scenario (Data set D), MOEs at the maximum of 95th percentile ranges were below 80 for all population groups except for adolescents. The dietary exposures estimated using the maximum permitted levels would result in MOEs below 80 in all population groups at the maximum of the ranges of the mean, and for most of the population groups at both minimum and maximum of the ranges at the 95th percentile. The Panel concluded that this raises a safety concern for both dietary exposure scenarios. The Panel also performed a risk assessment for toxic elements present in sulfur dioxide-sulfites (E 220-228), based on data submitted by IBOs, and concluded that the maximum limits in the EU specifications for arsenic, lead and mercury should be lowered and a maximum limit for cadmium should be introduced.

13.
EFSA J ; 20(6): e07353, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35770238

ABSTRACT

Glycerol (E 422) was re-evaluated in 2017 by the former EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). As a follow-up to that assessment, in this opinion, the Panel on Food Additives and Flavourings (FAF) addresses the data gaps identified to support an amendment of the EU specifications for E 422 in Commission Regulation (EU) No 231/2012. The Panel performed a risk assessment of undesirable impurities present in E 422. The Panel concluded that the maximum limits in the EU specifications for the four toxic elements (arsenic, lead, mercury and cadmium) should be lowered based on actual levels in the commercial food additive E 422. The Panel recommended setting a numerical limit value for acrolein in the specifications for E 422. The potential exposure to free 3-monochloropropanediol at the maximum limit of 0.1 mg/kg, as laid out in the specifications for E 422, does not give rise to a health concern. The Panel recommended to consider modifying the definition of E 422 in Commission Regulation (EU) No 231/2012 indicating that E 422 is obtained only from vegetable oils and fats and undergoes purification processes that involve distillation, and other clean up steps to obtain refined glycerol. Overall, the Panel concluded that the technical data provided support an amendment of the specifications for glycerol (E 422).

14.
EFSA J ; 20(5): e07308, 2022 May.
Article in English | MEDLINE | ID: mdl-35600272

ABSTRACT

Polyglycerol esters of fatty acids (PEFA, E 475) was re-evaluated in 2017 by the former EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). As a follow-up to this assessment, in this opinion, the Panel on Food Additives and Flavouring (FAF) addresses the data gaps identified to support an amendment of the EU specifications for E 475. The Panel performed a risk assessment of undesirable impurities and constituents potentially present in E 475. The Panel concluded that the maximum limits in the EU specifications for the 4 toxic elements (arsenic, lead, mercury and cadmium) should be lowered based on actual levels in the commercial food additive E 475. The Panel also concluded that maximum limits for erucic acid, 3-monochloropropanediol and glycidyl esters should be included in the EU specifications for E 475. Alternatively, the Panel recommends an amendment of the definition of E 475 to include a requirement that the fats and oils used in the manufacturing of E 475 comply with the respective EU legislation regarding suitability for human consumption. Further, the Panel concluded that there is no need for setting a specification limit for the content of trans-fatty acids in E 475 as a limit is established in the Regulation (EU) No 2019/649, i.e. 2 g of trans-fat per 100 g fat in food for the final consumer. Finally, the Panel recommends a modification of the definition of E 475 indicating that polyglycerol used for the manufacturing of E 475 should be produced from glycerol meeting the specifications for E 422 (Commission Regulation (EU) No 231/2012). In this case, respective specification limits for epichlorohydrin, acrolein and butanetriol would not be needed for E 475.

15.
EFSA J ; 20(5): e07294, 2022 May.
Article in English | MEDLINE | ID: mdl-35515334

ABSTRACT

Polyglycerol polyricinoleate (PGPR, E 476) was re-evaluated in 2017 by the former EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). As a follow-up to this assessment, in this opinion, the Panel on Food Additives and Flavouring (FAF) addresses the data gaps identified to support an amendment of the EU specifications for E 476. Additionally, this opinion deals with the assessment of the proposed extension of use for E 476 in edible ices and a revision of the maximum permitted level in emulsified sauces. The Panel concluded that the proposed extension of use, if authorised, would not give rise to a safety concern. Additionally, the Panel performed a risk assessment of undesirable impurities potentially present in E 476. The Panel concluded that the maximum limits in the EU specifications for the four toxic elements (arsenic, lead, mercury, cadmium) should be lowered based on actual levels in the commercial food additive E 476. The Panel also concluded that maximum limits for glycidyl esters and 3-monochloropropanediol should be included in the EU specifications for E 476. Alternatively, the Panel recommends an amendment of the definition of E 476 to include a requirement that the fats and oils used in the manufacturing of E 476 comply with the respective EU legislation regarding suitability for human consumption. Further, the Panel recommends a modification of the definition of E 476 indicating that polyglycerol used for the manufacturing of E 476 should be produced from glycerol meeting the specifications for E 422 (Commission Regulation (EU) No 231/2012). In this case, respective specification limits for epichlorohydrin, acrolein and butanetriol would not be needed for E 476. Finally, the Panel concluded that the proposed method based on the determination of ricinoleic acid is suitable for the determination of E 476 content in food.

16.
EFSA J ; 20(2): e07066, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35154440

ABSTRACT

The EFSA Panel on Food Additive and Flavourings (FAF) assessed the safety of glucosylated steviol glycosides proposed for use as a new food additive in different food categories. Glucosylated steviol glycosides consist of a mixture of glucosylated steviol glycosides, containing 1-20 additional glucose units bound to the parent steviol glycosides. Glucosylated steviol glycosides consist of not less than 95% (on dry, dextrin-free, basis) of total steviol glycosides, comprised of glucosylated and parent steviol glycosides. Glucosylated steviol glycosides are produced via enzymatic bioconversion using cyclomaltodextrin glucanotransferase (CGTase) (EC 2.4.1.19), derived from a non-genetically modified strain of Anoxybacillus caldiproteolyticus, that catalyses the transfer of glucose from starch to steviol glycosides mixtures isolated from the dried leaves of Stevia Rebaudiana. The Panel considered that the metabolism of glucosylated steviol glycosides is sufficiently similar to the already authorised steviol glycosides, and thus, the toxicological data previously assessed by the ANS Panel for steviol glycosides (E 960) were considered to support their safety as food additive. The existing acceptable daily intake (ADI) for steviol glycosides (E 960) of 4 mg/kg body weight (bw) per day expressed as steviol can also be applied to glucosylated steviol glycosides. The Panel concluded that there is no safety concern for the use of glucosylated steviol glycosides as a new food additive at the proposed use and use levels. The Panel recommended some modifications to the specifications proposed by the applicant for glucosylated steviol glycosides with respect to the assay, the definition of the proposed new food additive and the proposed maximum limits for arsenic.

17.
EFSA J ; 19(5): e06585, 2021 May.
Article in English | MEDLINE | ID: mdl-33976718

ABSTRACT

The present opinion deals with an updated safety assessment of the food additive titanium dioxide (E 171) based on new relevant scientific evidence considered by the Panel to be reliable, including data obtained with TiO2 nanoparticles (NPs) and data from an extended one-generation reproductive toxicity (EOGRT) study. Less than 50% of constituent particles by number in E 171 have a minimum external dimension < 100 nm. In addition, the Panel noted that constituent particles < 30 nm amounted to less than 1% of particles by number. The Panel therefore considered that studies with TiO2 NPs < 30 nm were of limited relevance to the safety assessment of E 171. The Panel concluded that although gastrointestinal absorption of TiO2 particles is low, they may accumulate in the body. Studies on general and organ toxicity did not indicate adverse effects with either E 171 up to a dose of 1,000 mg/kg body weight (bw) per day or with TiO2 NPs (> 30 nm) up to the highest dose tested of 100 mg/kg bw per day. No effects on reproductive and developmental toxicity were observed up to a dose of 1,000 mg E 171/kg bw per day, the highest dose tested in the EOGRT study. However, observations of potential immunotoxicity and inflammation with E 171 and potential neurotoxicity with TiO2 NPs, together with the potential induction of aberrant crypt foci with E 171, may indicate adverse effects. With respect to genotoxicity, the Panel concluded that TiO2 particles have the potential to induce DNA strand breaks and chromosomal damage, but not gene mutations. No clear correlation was observed between the physico-chemical properties of TiO2 particles and the outcome of either in vitro or in vivo genotoxicity assays. A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out. Several modes of action for the genotoxicity may operate in parallel and the relative contributions of different molecular mechanisms elicited by TiO2 particles are not known. There was uncertainty as to whether a threshold mode of action could be assumed. In addition, a cut-off value for TiO2 particle size with respect to genotoxicity could not be identified. No appropriately designed study was available to investigate the potential carcinogenic effects of TiO2 NPs. Based on all the evidence available, a concern for genotoxicity could not be ruled out, and given the many uncertainties, the Panel concluded that E 171 can no longer be considered as safe when used as a food additive.

18.
EFSA J ; 19(1): e06363, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33456552

ABSTRACT

This opinion deals with the re-evaluation of polydextrose (E 1200) when used as a food additive. The Panel followed the conceptual framework for the risk assessment of certain additives and considered that: adequate exposure estimates were available; the margin of safety (MOS)/margin of exposure (MOE) for arsenic was between 0.5-14 and 8.5 for lead; the exhaustions of the tolerable weekly intake (TWI) for cadmium would be 165%, 10% for mercury, whereas the exhaustion of the tolerable daily intake (TDI) for nickel would be 9%; the absorption is limited and part of polydextrose is fermented in the large intestine into short-chain fatty acids (SCFA); adequate toxicity data were available; there is no concern with respect to genotoxicity; no adverse effects were reported in subchronic studies in rats, dogs or monkeys nor in chronic or carcinogenicity studies in mice and rats at the highest doses tested of up 12,500 mg/kg body weight (bw) per day and 15,000 mg/kg bw per day, respectively; the nephrocalcinosis in dogs given high doses of polydextrose was considered to be a treatment-related but a secondary effect related to diarrhoea, and hence not relevant for the risk assessment; no adverse effects were reported in reproductive or developmental toxicity studies in rats administered up to 10,000 mg polydextrose/kg bw per day, or in a developmental toxicity study in rabbits up to 1,818 mg/kg bw per day (the highest dose tested). Therefore, the Panel concluded that there is no need for numerical acceptable daily intake (ADI) for polydextrose (E 1200), and that there is no safety concern for the reported uses and use levels of polydextrose as a food additive. The Panel recommended that European Commission considers to lower the maximum limit for lead and to introduce limits for arsenic, cadmium and mercury in the EU specifications for polydextrose (E 1200), and to verify that polydextrose-N as a food additive (E 1200) is no longer marketed in the EU.

19.
EFSA J ; 18(3): e06030, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32874248

ABSTRACT

The EFSA Panel on Food Additives and Flavourings (FAF) provides a scientific opinion on tartaric acid-tartrates (E 334-337, 354) when used as food additives. The Scientific Committee for Food (SCF) in 1990 established an acceptable daily intake (ADI) of 30 mg/kg body weight (bw) per day, for l(+)-tartaric acid and its potassium and sodium salts. The metabolism of l(+)-tartaric acid and its potassium sodium salt was shown to be species dependent, with a greater absorption in rats than in humans. No toxic effects, including nephrotoxicity, were observed in toxicological studies in which the l(+)-form was tested. There was no indication for a genotoxic potential of tartaric acid and its sodium and potassium salts. In a chronic study in rats, no indication for carcinogenicity of monosodium l(+)-tartrate was reported at the highest dose tested (3,100 mg/kg bw per day). The available studies for maternal or developmental toxicity did not report any relevant effects; no studies for reproductive toxicity were available; however, no effects on reproductive organs were observed in the chronic toxicity study. The Panel concluded that the data on systemic availability were robust enough to derive a chemical-specific uncertainty factor instead of the usual default uncertainty factor of 100. A total uncertainty factor of 10 was derived by applying a total interspecies uncertainty factor of 1 instead of 10, based on data showing lower internal exposure in humans compared to rats. The Panel established a group ADI for l(+)-tartaric acid-tartrates (E 334-337 and E 354) of 240 mg/kg bw per day, expressed as tartaric acid, by applying the total uncertainty factor of 10 to the reference point of 3,100 mg sodium tartrate/kg bw per day, approximately to 2,440 mg tartaric acid/kg bw per day. The exposure estimates for the different population groups for the refined non-brand-loyal exposure scenario did not exceed the group ADI of 240 mg/kg bw per day, expressed as tartaric acid. Some recommendations were made by the Panel.

20.
EFSA J ; 18(3): e06031, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32874249

ABSTRACT

The Panel on Food Additives and Flavourings (FAF) provided a scientific opinion re-evaluating the safety of metatartaric acid (E 353) when used as a food additive. Metatartaric acid (E 353) had been previously evaluated by the Scientific Committee on Food (SCF) and Joint FAO/WHO Expert Committee on Food Additives (JECFA). Based on the presumption that metatartaric acid is fully hydrolysed pre-systemically to l(+)-tartaric acid, the Panel concluded that metatartaric acid (E 353) should be included in the group acceptable daily intake (ADI) of 240 mg/kg body weight (bw) per day, expressed as tartaric acid, for l(+)-tartaric acid-tartrates (E 334-337, 354) which was established by the EFSA FAF Panel in 2020. Exposure estimates were calculated for metatartaric acid (E 353) using a maximum level and refined exposure assessment scenario. The Panel also concluded that there is no safety concern for the use of metatartaric acid (E 353) at the reported use and use level. The Panel made a number of recommendations.

SELECTION OF CITATIONS
SEARCH DETAIL
...