Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 106(8): 2155-2164, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35077223

ABSTRACT

Banana Blood disease is a bacterial wilt caused by Ralstonia syzygii subsp. celebesensis and is an economically important disease in Indonesia and Malaysia. Transmission of this pathogen is hypothesized to occur through insects mechanically transferring bacteria from diseased to healthy banana inflorescences and other pathways involving pruning tools, water movement, and root-to-root contact. This study demonstrates that the ooze from the infected male bell and the sap from various symptomatic plant parts are infective, and the cut surfaces of a bunch peduncle, petiole, corm, pseudostem, and the rachis act as infection courts for R. syzygii subsp. celebesensis. In addition, evidence is provided that R. syzygii subsp. celebesensis is highly tool transmissible, that the bacterium can be transferred from the roots of a diseased plant to the roots of a healthy plant and transferred from the mother plant to the sucker. We provide evidence that local dispersal of Blood disease occurs predominantly through mechanical transmission by insects, birds, bats, or human activities from diseased to healthy banana plants and that long-distance dispersal occurs through the movement of contaminated planting material. Disease management strategies to prevent crop losses associated with this emerging disease are discussed based on our findings.


Subject(s)
Hematologic Diseases , Musa , Bacteria , Humans , Musa/microbiology , Plant Diseases/microbiology , Ralstonia
2.
Plant Dis ; 106(3): 947-959, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34668403

ABSTRACT

Blood disease in bananas caused by Ralstonia syzygii subsp. celebesensis is a bacterial wilt disease that causes major yield losses of banana in Indonesia and peninsular Malaysia. The disease has significantly increased its geographic distribution in the past decade. Diagnostic methods are an important component of disease management in vegetatively propagated crops such as banana to constrain incursions of plant pathogens. Therefore, the objectives of this study were (i) to design and rigorously validate a novel banana Blood disease (BBD) real-time PCR assay with a high level of specificity and sensitivity of detection and (ii) to validate published PCR-based diagnostic methods targeting the intergenic region in the megaplasmid ("121 assay" with primer set 121) or the phage tail protein-coding sequence in the bacterial chromosome ("Kubota assay" and "BDB2400 assay" with primer set BDB2400). Assay validation included 339 samples (174 Blood disease bacteria, 51 bacteria associated with banana plants, 51 members of the Ralstonia solanacearum species complex, and 63 samples from symptomatic and healthy plant material). Validation parameters were analytical specificity (inclusivity and exclusivity), selectivity, limit of detection, accuracy, and ruggedness. The 121 assay and our newly developed BBD real-time PCR assay detected all R. syzygii subsp. celebesensis strains with no cross-specificity during validation. Two different PCR assays using the primer set BDB2400 lacked specificity and selectivity. This study reveals that our novel BBD real-time PCR assay and the conventional PCR 121 assay are reliable methods for Blood disease diagnostics, as they comply with all tested validation parameters.


Subject(s)
Hematologic Diseases , Musa , Ralstonia solanacearum , Musa/microbiology , Phylogeny , Plant Diseases/microbiology , Ralstonia solanacearum/genetics
3.
Phytopathology ; 112(4): 803-810, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34636648

ABSTRACT

The bacterium Ralstonia syzygii subsp. celebesensis causes Blood disease of banana, a vascular wilt of economic significance in Indonesia and Malaysia. Blood disease has expanded its geographic range in the last 20 years and is an emerging threat to Southeast Asian banana production. Many aspects of the disease cycle and biology are not well understood, including the ability of different parts of the female and male inflorescence of banana to act as infection courts. This study confirms that the banana varieties of Cavendish, and Kepok 'Kuning' are susceptible to Blood disease and that an inoculum concentration of 102 CFU/ml of R. syzygii subsp. celebesensis is adequate to initiate disease after pseudostem inoculation. Data show that infection occurs through both the male and female parts of a banana inflorescence and the rachis when snapped to remove the male bell. The infection courts are the female flowers, the male bell bract scar, the male bell flower cushion, the snapped rachis, and deflowered fingers. The location of these infection courts concurs with the dye studies demonstrating that dye externally applied to these plants parts enters the plant vascular system. Thus, the hypothesis is supported that infection of R. syzygii subsp. celebesensis occurs through open xylem vessels of the male and female parts of the banana inflorescence.


Subject(s)
Hematologic Diseases , Musa , Inflorescence , Musa/microbiology , Plant Diseases/microbiology , Ralstonia
4.
Plant Dis ; 105(10): 2792-2800, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33973808

ABSTRACT

Blood disease in bananas caused by Ralstonia syzygii subsp. celebesensis is a bacterial wilt causing significant crop losses in Indonesia and Malaysia. Disease symptoms include wilting of the plant and red-brown vascular staining, internal rot, and discoloration of green banana fruit. There is no known varietal resistance to this disease in the Musa genus, although variation in susceptibility has been observed, with the popular Indonesian cooking banana variety Kepok being highly susceptible. This study established the current geographic distribution of Blood disease in Indonesia and confirmed the pathogenicity of isolates by Koch's postulates. The long-distance distribution of the disease followed an arbitrary pattern indicative of human-assisted movement of infected banana materials. In contrast, local or short-distance spread radiated from a single infection source, indicative of dispersal by insects and possibly contaminated tools, water, or soil. The rapid expansion of its geographical range makes Blood disease an emerging threat to banana production in Southeast Asia and beyond.


Subject(s)
Musa , Plant Diseases , Asia, Southeastern , Bacteria , Musa/microbiology , Plant Diseases/microbiology
5.
Front Plant Sci ; 10: 547, 2019.
Article in English | MEDLINE | ID: mdl-31214206

ABSTRACT

Fusarium wilt is currently spreading in banana growing regions around the world leading to substantial losses. The disease is caused by the fungus Fusarium oxysporum f. sp. cubense (Foc), which is further classified into distinct races according to the banana varieties that they infect. Cavendish banana is resistant to Foc race 1, to which the popular Gros Michel subgroup succumbed last century. Cavendish effectively saved the banana industry, and became the most cultivated commercial subgroup worldwide. However, Foc tropical race 4 (TR4) subsequently emerged in Southeast Asia, causing significant yield losses due to its high level of aggressiveness to cultivars of Cavendish, and other commonly grown cultivars. Preventing further spread is crucially important in the absence of effective control methods or resistant market-acceptable banana cultivars. Implementation of quarantine and containment measures depends on early detection of the pathogen through reliable diagnostics. In this study, we tested the hypothesis that secreted in xylem (SIX) genes, which currently comprise the only known family of effectors in F. oxysporum, contain polymorphisms to allow the design of molecular diagnostic assays that distinguish races and relevant VCGs of Foc. We present specific and reproducible diagnostic assays based on conventional PCR targeting SIX genes, using as templates DNA extracted from pure Foc cultures. Sets of primers specifically amplify regions of: SIX6 in Foc race 1, SIX1 gene in TR4, SIX8 in subtropical race 4, SIX9/SIX10 in Foc VCG 0121, and SIX13 in Foc VCG 0122. These assays include simplex and duplex PCRs, with additional restriction digestion steps applied to amplification products of genes SIX1 and SIX13. Assay validations were conducted to a high international standard including the use of 250 Fusarium spp. isolates representing 16 distinct Fusarium species, 59 isolates of F. oxysporum, and 21 different vegetative compatibility groups (VCGs). Tested parameters included inter and intraspecific analytical specificity, sensitivity, robustness, repeatability, and reproducibility. The resulting suite of assays is able to reliably and accurately detect R1, STR4, and TR4 as well as two VCGs (0121 and 0122) causing Fusarium wilt in bananas.

SELECTION OF CITATIONS
SEARCH DETAIL
...