Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 284: 119880, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34389404

ABSTRACT

AIMS: Cardiovascular intrinsic frequencies (IFs) are associated with cardiovascular health and disease, separately capturing the systolic and diastolic information contained in a single (uncalibrated) arterial waveform. Previous clinical investigations related to IF have been restricted to studying chronic conditions, and hence its applicability for acute cardiovascular diseases has not been explored. Studies of cardiovascular complications such as acute myocardial infarction are difficult to perform in humans due to the high-risk and invasive nature of such procedures. Although they can be performed in preclinical (animal) models, the corresponding interpretation of IF measures and how they ultimately translate to humans is unknown. Hence, we studied the scalability of IF across species and sensor platforms. MATERIALS AND METHODS: Scaled values of the two intrinsic frequencies ω1 and ω2 (corresponding to systolic and diastolic dynamics, respectively) were extracted from carotid waveforms acquired either non-invasively (via tonometry, Vivio or iPhone) in humans or invasively in rabbits and rats. KEY FINDINGS: The scaled IF parameters for all species were found to fall within the same physiological ranges carrying similar statistical characteristics, even though body sizes and corresponding heart rates of the species were substantially different. Additionally, results demonstrated that all non-invasive sensor platforms were significantly correlated with each other for scaled IFs, suggesting that such analysis is device-agnostic and can be applied to upcoming wearable technologies. SIGNIFICANCE: Ultimately, our results found that IFs are scalable across species, which is particularly valuable for the training of IF-based artificial intelligence systems using both preclinical and clinical data.


Subject(s)
Cardiovascular System/pathology , Models, Cardiovascular , Animals , Calibration , Carotid Arteries/pathology , Disease Models, Animal , Humans , Rabbits , Rats, Sprague-Dawley
2.
Hypertension ; 77(2): 338-346, 2021 02.
Article in English | MEDLINE | ID: mdl-33390053

ABSTRACT

Intrinsic frequencies (IFs) derived from arterial waveforms are associated with cardiovascular performance, aging, and prevalent cardiovascular disease (CVD). However, prognostic value of these novel measures is unknown. We hypothesized that IFs are associated with incident CVD risk. Our sample was drawn from the Framingham Heart Study Original, Offspring, and Third Generation Cohorts and included participants free of CVD at baseline (N=4700; mean age 52 years, 55% women). We extracted 2 dominant frequencies directly from a series of carotid pressure waves: the IF of the coupled heart and vascular system during systole (ω1) and the IF of the decoupled vasculature during diastole (ω2). Total frequency variation (Δω) was defined as the difference between ω1 and ω2. We used Cox proportional hazards regression models to relate IFs to incident CVD events during a mean follow-up of 10.6 years. In multivariable models adjusted for CVD risk factors, higher ω1 (hazard ratio [HR], 1.14 [95% CI], 1.03-1.26]; P=0.01) and Δω (HR, 1.16 [95% CI, 1.03-1.30]; P=0.02) but lower ω2 (HR, 0.87 [95% CI, 0.77-0.99]; P=0.03) were associated with higher risk for incident composite CVD events. In similarly adjusted models, higher ω1 (HR, 1.23 [95% CI, 1.07-1.42]; P=0.004) and Δω (HR, 1.26 [95% CI, 1.05-1.50]; P=0.01) but lower ω2 (HR, 0.81 [95% CI, 0.66-0.99]; P=0.04) were associated with higher risk for incident heart failure. IFs were not significantly associated with incident myocardial infarction or stroke. Novel IFs may represent valuable markers of heart failure risk in the community.


Subject(s)
Blood Pressure/physiology , Carotid Arteries/physiopathology , Heart Failure/epidemiology , Hemodynamics/physiology , Adult , Aged , Female , Heart/physiopathology , Heart Failure/physiopathology , Humans , Incidence , Longitudinal Studies , Male , Middle Aged , Prognosis , Risk , Risk Assessment
3.
Eur J Mech B Fluids ; 68: 184-192, 2018.
Article in English | MEDLINE | ID: mdl-29736127

ABSTRACT

The Fontan procedure for univentricular heart defects creates a unique circulation where all pulmonary blood flow is passively supplied directly from systemic veins. Computational simulations, aimed at optimizing the surgery, have assumed blood to be a Newtonian fluid without evaluating the potential error introduced by this assumption. We compared flow behavior between a non-Newtonian blood analog (0.04% xanthan gum) and a control Newtonian fluid (45% glycerol) in a simplified model of the Fontan circulation. Particle image velocimetry was used to examine flow behavior at two different cardiac outputs and two caval blood flow distributions. Pressure and flow rates were measured at each inlet and outlet. Velocity, shear strain, and shear stress maps were derived from velocity data. Power loss was calculated from pressure, flow, and velocity data. Power loss was increased in all test conditions with xanthan gum vs. glycerol (mean 10±2.9% vs. 5.6±1.3%, p=0.032). Pulmonary blood flow distribution differed in all conditions, more so at low cardiac output. Caval blood flow mixing patterns and shear stress were also qualitatively different between the solutions in all conditions. We conclude that assuming blood to be a Newtonian fluid introduces considerable error into simulations of the Fontan circulation, where low-shear flow predominates.

5.
Crit Care Med ; 45(7): 1115-1120, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28441235

ABSTRACT

OBJECTIVE: The study is based on previously reported mathematical analysis of arterial waveform that extracts hidden oscillations in the waveform that we called intrinsic frequencies. The goal of this clinical study was to compare the accuracy of left ventricular ejection fraction derived from intrinsic frequencies noninvasively versus left ventricular ejection fraction obtained with cardiac MRI, the most accurate method for left ventricular ejection fraction measurement. DESIGN: After informed consent, in one visit, subjects underwent cardiac MRI examination and noninvasive capture of a carotid waveform using an iPhone camera (The waveform is captured using a custom app that constructs the waveform from skin displacement images during the cardiac cycle.). The waveform was analyzed using intrinsic frequency algorithm. SETTING: Outpatient MRI facility. SUBJECTS: Adults able to undergo MRI were referred by local physicians or self-referred in response to local advertisement and included patients with heart failure with reduced ejection fraction diagnosed by a cardiologist. INTERVENTIONS: Standard cardiac MRI sequences were used, with periodic breath holding for image stabilization. To minimize motion artifact, the iPhone camera was held in a cradle over the carotid artery during iPhone measurements. MEASUREMENTS AND MAIN RESULTS: Regardless of neck morphology, carotid waveforms were captured in all subjects, within seconds to minutes. Seventy-two patients were studied, ranging in age from 20 to 92 years old. The main endpoint of analysis was left ventricular ejection fraction; overall, the correlation between ejection fraction-iPhone and ejection fraction-MRI was 0.74 (r = 0.74; p < 0.0001; ejection fraction-MRI = 0.93 × [ejection fraction-iPhone] + 1.9). CONCLUSIONS: Analysis of carotid waveforms using intrinsic frequency methods can be used to document left ventricular ejection fraction with accuracy comparable with that of MRI. The measurements require no training to perform or interpret, no calibration, and can be repeated at the bedside to generate almost continuous analysis of left ventricular ejection fraction without arterial cannulation.


Subject(s)
Magnetic Resonance Imaging , Mobile Applications , Stroke Volume/physiology , Ventricular Function, Left/physiology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Reproducibility of Results , Smartphone
6.
J Diabetes Sci Technol ; 9(6): 1246-52, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26183600

ABSTRACT

Insulin resistance is the hallmark of classical type II diabetes. In addition, insulin resistance plays a central role in metabolic syndrome, which astonishingly affects 1 out of 3 adults in North America. The insulin resistance state can precede the manifestation of diabetes and hypertension by years. Insulin resistance is correlated with a low-grade inflammatory condition, thought to be induced by obesity as well as other conditions. Currently, the methods to measure and monitor insulin resistance, such as the homeostatic model assessment and the euglycemic insulin clamp, can be impractical, expensive, and invasive. Abundant evidence exists that relates increased pulse pressure, pulse wave velocity (PWV), and vascular dysfunction with insulin resistance. We introduce a potential method of assessing insulin resistance that relies on a novel signal-processing algorithm, the intrinsic frequency method (IFM). The method requires a single pulse pressure wave, thus the term " wave biopsy."


Subject(s)
Aorta/physiopathology , Arterial Pressure , Insulin Resistance , Metabolic Syndrome/diagnosis , Pulse Wave Analysis/methods , Vascular Diseases/diagnosis , Vascular Stiffness , Algorithms , Computer Simulation , Humans , Linear Models , Metabolic Syndrome/physiopathology , Models, Cardiovascular , Predictive Value of Tests , Vascular Diseases/physiopathology
7.
R Soc Open Sci ; 2(12): 150475, 2015 Dec.
Article in English | MEDLINE | ID: mdl-27019733

ABSTRACT

In this paper, we analyse the convergence, accuracy and stability of the intrinsic frequency (IF) method. The IF method is a descendant of the sparse time frequency representation methods. These methods are designed for analysing nonlinear and non-stationary signals. Specifically, the IF method is created to address the cardiovascular system that by nature is a nonlinear and non-stationary dynamical system. The IF method is capable of handling specific nonlinear and non-stationary signals with less mathematical regularity. In previous works, we showed the clinical importance of the IF method. There, we showed that the IF method can be used to evaluate cardiovascular performance. In this article, we will present further details of the mathematical background of the IF method by discussing the convergence and the accuracy of the method with and without noise. It will be shown that the waveform fit extracted from the signal is accurate even in the presence of noise.

8.
J R Soc Interface ; 11(98): 20140617, 2014 Sep 06.
Article in English | MEDLINE | ID: mdl-25008087

ABSTRACT

The reductionist approach has dominated the fields of biology and medicine for nearly a century. Here, we present a systems science approach to the analysis of physiological waveforms in the context of a specific case, cardiovascular physiology. Our goal in this study is to introduce a methodology that allows for novel insight into cardiovascular physiology and to show proof of concept for a new index for the evaluation of the cardiovascular system through pressure wave analysis. This methodology uses a modified version of sparse time-frequency representation (STFR) to extract two dominant frequencies we refer to as intrinsic frequencies (IFs; ω1 and ω2). The IFs are the dominant frequencies of the instantaneous frequency of the coupled heart + aorta system before the closure of the aortic valve and the decoupled aorta after valve closure. In this study, we extract the IFs from a series of aortic pressure waves obtained from both clinical data and a computational model. Our results demonstrate that at the heart rate at which the left ventricular pulsatile workload is minimized the two IFs are equal (ω1 = ω2). Extracted IFs from clinical data indicate that at young ages the total frequency variation (Δω = ω1 - ω2) is close to zero and that Δω increases with age or disease (e.g. heart failure and hypertension). While the focus of this paper is the cardiovascular system, this approach can easily be extended to other physiological systems or any biological signal.


Subject(s)
Hemodynamics , Models, Cardiovascular , Systems Theory , Algorithms , Aorta/physiology , Cardiology/methods , Cardiovascular Diseases/physiopathology , Computer Simulation , Fourier Analysis , Heart/physiology , Heart Rate , Humans , Software , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...