Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(27): 30457-30465, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32538072

ABSTRACT

Aerogels are promising materials for many aerospace applications, including high-performance antennae and flexible insulation, because of their inherent low density and high surface areas. Polymer aerogels, especially polyimide aerogels, provide excellent mechanical properties beyond traditional silica aerogels while maintaining the required thermal stability. Polyimide aerogel surface area, porosity, and pore volume are important properties; however, these measurements are traditionally conducted on the aerogel after removal of the solvent. Because of this, the impact of synthetic control and solvent presence on the nanoscale to mesoscale structure of polyimide aerogels in functional applications is unclear. In this report, we use small-angle neutron scattering to determine the dry and solvated skeletal strut size and composition of polyimide aerogels to deduce the impact of solvation on the structure of complex aerogel struts. Our results show that the aerogel contains a hierarchical assembly of pores, with pores present both within and between the supporting struts. This translates to a material with solvent in the larger pores, as well as absorbed in the supporting polyimide skeleton. The amount of solvent uptake in the struts varies with the solvent and polyimide properties. The insight from these results provides pathways to determine the correlations between aerogel nano- and mesoscale structural characteristics, fabrication processes, and their performance in functional applications such as polymeric battery separators. These results also broaden the characterization tools of polymeric aerogels that differentiate between dry and solvated nano- and mesoscale structures that exist in common operating conditions.

2.
Soft Matter ; 16(5): 1287-1297, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31915772

ABSTRACT

Spin casting has become an attractive method to fabricate polymer thin films found in organic electronic devices such as field-effect transistors, and light emitting diodes. Many studies have shown that altering spin casting parameters can improve device performance, which has been directly correlated to the degree of polymer alignment, crystallinity, and morphology of the thin film. To provide a thorough understanding of the balance of thermodynamic and kinetic factors that influence the stratification of polymer blend thin films, we monitor stratified polymer blend thin films developed from poly(3-hexylthiophene-2,5-diyl) and poly(methyl methacrylate) blends at controlled loading ratios, relative molecular weights, and casting speed. The structures of these thin films were characterized via neutron reflectivity, and the results show that at the fastest casting speed, polymer-polymer interactions and surface energy of the polymers in the blend dictate the final film structure, and at the slowest casting speed, there is less control over the film layering due to the polymer-polymer interactions, surface energy, and entropy simultaneously driving stratification. As well, the relative solubility limits of the polymers in the pre-deposition solution play a role in the stratification process at the slowest casting speed. These results broaden the current understanding of the relationship between spin casting conditions and vertical phase separation in polymer blend thin films and provide a foundation for improved rational design of polymer thin film fabrication processes to attain targeted stratification, and thus performance.

3.
J Vis Exp ; (130)2017 12 21.
Article in English | MEDLINE | ID: mdl-29286411

ABSTRACT

We demonstrate a protocol to effectively monitor the gelation process of a high concentration solution of conjugated polymer both in the presence and absence of white light exposure. By instituting a controlled temperature ramp, the gelation of these materials can be precisely monitored as they proceed through this structural evolution, which effectively mirrors the conditions experienced during the solution deposition phase of organic electronic device fabrication. Using small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) along with appropriate fitting protocols we quantify the evolution of select structural parameters throughout this process. Thorough analysis indicates that continued light exposure throughout the gelation process significantly alters the structure of the ultimately formed gel. Specifically, the aggregation process of poly(3-hexylthiophene-2,5-diyl) (P3HT) nano-scale aggregates is negatively affected by the presence of illumination, ultimately resulting in the retardation of growth in conjugated polymer microstructures and the formation of smaller scale macro-aggregate clusters.


Subject(s)
Gels/chemistry , Lighting/methods , Neutron Diffraction/methods , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...