Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 20298, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36522360

ABSTRACT

Particulate matter (PM) concentration levels in the London Underground (LU) are higher than London background levels and beyond World Health Organization (WHO) defined limits. Wheel, track, and brake abrasion are the primary sources of particulate matter, producing predominantly Fe-rich particles that make the LU microenvironment particularly well suited to study using environmental magnetism. Here we combine magnetic properties, high-resolution electron microscopy, and electron tomography to characterize the structure, chemistry, and morphometric properties of LU particles in three dimensions with nanoscale resolution. Our findings show that LU PM is dominated by 5-500 nm particles of maghemite, occurring as 0.1-2 µm aggregated clusters, skewing the size-fractioned concentration of PM artificially to larger sizes when measured with traditional monitors. Magnetic properties are largely independent of the PM filter size (PM10, PM4, and PM2.5), and demonstrate the presence of superparamagnetic (< 30 nm), single-domain (30-70 nm), and vortex/pseudo-single domain (70-700 nm) signals only (i.e., no multi-domain particles > 1 µm). The oxidized nature of the particles suggests that PM exposure in the LU is dominated by resuspension of aged dust particles relative to freshly abraded, metallic particles from the wheel/track/brake system, suggesting that periodic removal of accumulated dust from underground tunnels might provide a cost-effective strategy for reducing exposure. The abundance of ultrafine particles identified here could have particularly adverse health impacts as their smaller size makes it possible to pass from lungs to the blood stream. Magnetic methods are shown to provide an accurate assessment of ultrafine PM characteristics, providing a robust route to monitoring, and potentially mitigating this hazard.


Subject(s)
Air Pollutants , Air Pollutants/analysis , London , Particulate Matter/analysis , Dust/analysis , Magnetic Iron Oxide Nanoparticles , Magnetic Phenomena , Environmental Monitoring/methods , Particle Size
2.
Science ; 367(6475): 285-288, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31949077

ABSTRACT

Strange metal behavior is ubiquitous in correlated materials, ranging from cuprate superconductors to bilayer graphene, and may arise from physics beyond the quantum fluctuations of a Landau order parameter. In quantum-critical heavy-fermion antiferromagnets, such physics may be realized as critical Kondo entanglement of spin and charge and probed with optical conductivity. We present terahertz time-domain transmission spectroscopy on molecular beam epitaxy-grown thin films of YbRh2Si2, a model strange-metal compound. We observed frequency over temperature scaling of the optical conductivity as a hallmark of beyond-Landau quantum criticality. Our discovery suggests that critical charge fluctuations play a central role in the strange metal behavior, elucidating one of the long-standing mysteries of correlated quantum matter.

3.
Nano Lett ; 11(8): 3399-403, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21744799

ABSTRACT

The Wulff construction is an invaluable tool to understand and predict the shape of nanoparticles. We demonstrate here that this venerable model, which gives a size-independent thermodynamic shape, becomes size dependent in the nanoscale regime for an alloy and that the infinite reservoir approximation breaks down. The improvements in structure and energetic modeling have wide-ranging implications both in areas where energetics govern (e.g., nucleation and growth) and where the surface composition is important (e.g., heterogeneous catalysis).

SELECTION OF CITATIONS
SEARCH DETAIL
...