Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 96: 103221, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824864

ABSTRACT

Image-guided surgery collocates patient-specific data with the physical environment to facilitate surgical decision making. Unfortunately, these guidance systems commonly become compromised by intraoperative soft-tissue deformations. Nonrigid image-to-physical registration methods have been proposed to compensate for deformations, but clinical utility requires compatibility of these techniques with data sparsity and temporal constraints in the operating room. While finite element models can be effective in sparse data scenarios, computation time remains a limitation to widespread deployment. This paper proposes a registration algorithm that uses regularized Kelvinlets, which are analytical solutions to linear elasticity in an infinite domain, to overcome these barriers. This algorithm is demonstrated and compared to finite element-based registration on two datasets: a phantom liver deformation dataset and an in vivo breast deformation dataset. The regularized Kelvinlets algorithm resulted in a significant reduction in computation time compared to the finite element method. Accuracy as evaluated by target registration error was comparable between methods. Average target registration errors were 4.6 ± 1.0 and 3.2 ± 0.8 mm on the liver dataset and 5.4 ± 1.4 and 6.4 ± 1.5 mm on the breast dataset for the regularized Kelvinlets and finite element method, respectively. Limitations of regularized Kelvinlets include the lack of organ-specific geometry and the assumptions of linear elasticity and infinitesimal strain. Despite limitations, this work demonstrates the generalizability of regularized Kelvinlets registration on two soft-tissue elastic organs. This method may improve and accelerate registration for image-guided surgery, and it shows the potential of using regularized Kelvinlets on medical imaging data.


Subject(s)
Algorithms , Finite Element Analysis , Liver , Phantoms, Imaging , Humans , Liver/diagnostic imaging , Female , Surgery, Computer-Assisted/methods , Breast/diagnostic imaging , Reproducibility of Results , Image Interpretation, Computer-Assisted/methods , Sensitivity and Specificity
2.
J Med Imaging (Bellingham) ; 11(1): 015001, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38196401

ABSTRACT

Purpose: Computational methods for image-to-physical registration during surgical guidance frequently rely on sparse point clouds obtained over a limited region of the organ surface. However, soft tissue deformations complicate the ability to accurately infer anatomical alignments from sparse descriptors of the organ surface. The Image-to-Physical Liver Registration Sparse Data Challenge introduced at SPIE Medical Imaging 2019 seeks to characterize the performance of sparse data registration methods on a common dataset to benchmark and identify effective tactics and limitations that will continue to inform the evolution of image-to-physical registration algorithms. Approach: Three rigid and five deformable registration methods were contributed to the challenge. The deformable approaches consisted of two deep learning and three biomechanical boundary condition reconstruction methods. These algorithms were compared on a common dataset of 112 registration scenarios derived from a tissue-mimicking phantom with 159 subsurface validation targets. Target registration errors (TRE) were evaluated under varying conditions of data extent, target location, and measurement noise. Jacobian determinants and strain magnitudes were compared to assess displacement field consistency. Results: Rigid registration algorithms produced significant differences in TRE ranging from 3.8±2.4 mm to 7.7±4.5 mm, depending on the choice of technique. Two biomechanical methods yielded TRE of 3.1±1.8 mm and 3.3±1.9 mm, which outperformed optimal rigid registration of targets. These methods demonstrated good performance under varying degrees of surface data coverage and across all anatomical segments of the liver. Deep learning methods exhibited TRE ranging from 4.3±3.3 mm to 7.6±5.3 mm but are likely to improve with continued development. TRE was weakly correlated among methods, with greatest agreement and field consistency observed among the biomechanical approaches. Conclusions: The choice of registration algorithm significantly impacts registration accuracy and variability of deformation fields. Among current sparse data driven image-to-physical registration algorithms, biomechanical simulations that incorporate task-specific insight into boundary conditions seem to offer best performance.

3.
IEEE Trans Biomed Eng ; 70(7): 2002-2012, 2023 07.
Article in English | MEDLINE | ID: mdl-37018246

ABSTRACT

OBJECTIVE: Deformable object tracking is common in the computer vision field, with applications typically focusing on nonrigid shape detection and usually not requiring specific three-dimensional point localization. In surgical guidance however, accurate navigation is intrinsically linked to precise correspondence of tissue structure. This work presents a contactless, automated fiducial acquisition method using stereo video of the operating field to provide reliable three-dimensional fiducial localization for an image guidance framework in breast conserving surgery. METHODS: On n = 8 breasts from healthy volunteers, the breast surface was measured throughout the full range of arm motion in a supine mock-surgical position. Using hand-drawn inked fiducials, adaptive thresholding, and KAZE feature matching, precise three-dimensional fiducial locations were detected and tracked through tool interference, partial and complete marker occlusions, significant displacements and nonrigid shape distortions. RESULTS: Compared to digitization with a conventional optically tracked stylus, fiducials were automatically localized with 1.6 ± 0.5 mm accuracy and the two measurement methods did not significantly differ. The algorithm provided an average false discovery rate <0.1% with all cases' rates below 0.2%. On average, 85.6 ± 5.9% of visible fiducials were automatically detected and tracked, and 99.1 ± 1.1% of frames provided only true positive fiducial measurements, which indicates the algorithm achieves a data stream that can be used for reliable on-line registration. CONCLUSIONS: Tracking is robust to occlusions, displacements, and most shape distortions. SIGNIFICANCE: This work-flow friendly data collection method provides highly accurate and precise three-dimensional surface data to drive an image guidance system for breast conserving surgery.


Subject(s)
Surgery, Computer-Assisted , Humans , Surgery, Computer-Assisted/methods , Motion , Algorithms , Imaging, Three-Dimensional/methods , Fiducial Markers
4.
Clin Biomech (Bristol, Avon) ; 104: 105927, 2023 04.
Article in English | MEDLINE | ID: mdl-36890069

ABSTRACT

BACKGROUND: Simulating soft-tissue breast deformations is of interest for many applications including image fusion, longitudinal registration, and image-guided surgery. For the surgical use case, positional changes cause breast deformations that compromise the use of preoperative imaging to inform tumor excision. Even when acquiring imaging in the supine position, which better reflects surgical presentation, deformations still occur due to arm motion and orientation changes. A biomechanical modeling approach to simulate supine breast deformations for surgical applications must be both accurate and compatible with the clinical workflow. METHODS: A supine MR breast imaging dataset from n = 11 healthy volunteers was used to simulate surgical deformations by acquiring images in arm-down and arm-up positions. Three linear-elastic modeling approaches with varying levels of complexity were used to predict deformations caused by this arm motion: a homogeneous isotropic model, a heterogeneous isotropic model, and a heterogeneous anisotropic model using a transverse-isotropic constitutive model. FINDINGS: The average target registration errors for subsurface anatomical features were 5.4 ± 1.5 mm for the homogeneous isotropic model, 5.3 ± 1.5 mm for the heterogeneous isotropic model, and 4.7 ± 1.4 mm for the heterogeneous anisotropic model. A statistically significant improvement in target registration error was observed between the heterogeneous anisotropic model and both the homogeneous and the heterogeneous isotropic models (P < 0.01). INTERPRETATION: While a model that fully incorporates all constitutive complexities of anatomical structure likely achieves the best accuracy, a computationally tractable heterogeneous anisotropic model provided significant improvement and may be applicable for image-guided breast surgeries.


Subject(s)
Breast , Surgery, Computer-Assisted , Humans , Anisotropy , Breast/diagnostic imaging , Breast/surgery , Magnetic Resonance Imaging/methods , Surgery, Computer-Assisted/methods , Algorithms
5.
J Med Imaging (Bellingham) ; 9(6): 065001, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36388143

ABSTRACT

Purpose: Breast conserving surgery (BCS) is a common procedure for early-stage breast cancer patients. Supine preoperative magnetic resonance (MR) breast imaging for visualizing tumor location and extent, while not standard for procedural guidance, is being explored since it more closely represents the surgical presentation compared to conventional diagnostic imaging positions. Despite this preoperative imaging position, deformation is still present between the supine imaging and surgical state. As a result, a fast and accurate image-to-physical registration approach is needed to realize image-guided breast surgery. Approach: In this study, three registration methods were investigated on healthy volunteers' breasts ( n = 11 ) with the supine arm-down position simulating preoperative imaging and supine arm-up position simulating intraoperative presentation. The registration methods included (1) point-based rigid registration using synthetic fiducials, (2) nonrigid biomechanical model-based registration using sparse data, and (3) a data-dense three-dimensional diffeomorphic image-based registration from the Advanced Normalization Tools (ANTs) repository. Additionally, deformation metrics (volume change and anisotropy) were calculated from the ANTs deformation field to better understand breast material mechanics. Results: The average target registration errors (TRE) were 10.4 ± 2.3 , 6.4 ± 1.5 , and 2.8 ± 1.3 mm (mean ± standard deviation) and the average fiducial registration errors (FRE) were 7.8 ± 1.7 , 2.5 ± 1.1 , and 3.1 ± 1.1 mm for the point-based rigid, nonrigid biomechanical, and ANTs registrations, respectively. The mechanics-based deformation metrics revealed an overall anisotropic tissue behavior and a statistically significant difference in volume change between glandular and adipose tissue, suggesting that nonrigid modeling methods may be improved by incorporating material heterogeneity and anisotropy. Conclusions: Overall, registration accuracy significantly improved with increasingly flexible and data-dense registration methods. Analysis of these outcomes may inform the future development of image guidance systems for lumpectomy procedures.

6.
Article in English | MEDLINE | ID: mdl-35607388

ABSTRACT

Breast conserving surgery (BCS) is a common procedure for early-stage breast cancer patients. Supine preoperative magnetic resonance (MR) breast imaging for visualizing tumor location and extent, while not standard for procedural guidance, more closely represents the surgical presentation compared to conventional diagnostic pendant positioning. Optimal utilization for surgical guidance, however, requires a fast and accurate image-to-physical registration from preoperative imaging to intraoperative surgical presentation. In this study, three registration methods were investigated on healthy volunteers' breasts (n=11) with the arm-down position simulating preoperative imaging and arm-up position simulating intraoperative data. The registration methods included: (1) point-based rigid registration using synthetic fiducials, (2) non-rigid biomechanical model-based registration using sparse data, and (3) a data-dense 3D diffeomorphic image-based registration from the Advanced Normalization Tools (ANTs) repository. The average target registration errors (TRE) were 10.4 ± 2.3, 6.4 ± 1.5, and 2.8 ± 1.3 mm (mean ± standard deviation) and the average fiducial registration errors (FRE) were 7.8 ± 1.7, 2.5 ± 1.1, and 3.1 ± 1.1 mm (mean ± standard deviation) for the point-based rigid, nonrigid biomechanical, and ANTs registrations, respectively. Additionally, common mechanics-based deformation metrics (volume change and anisotropy) were calculated from the ANTs deformation field. The average metrics revealed anisotropic tissue behavior and a statistical difference in volume change between glandular and adipose tissue, suggesting that nonrigid modeling methods may be improved by incorporating material heterogeneity and anisotropy. Overall, registration accuracy significantly improved with increasingly flexible registration methods, which may inform future development of image guidance systems for lumpectomy procedures.

7.
IEEE Trans Biomed Eng ; 69(12): 3760-3771, 2022 12.
Article in English | MEDLINE | ID: mdl-35604993

ABSTRACT

OBJECTIVE: During breast conserving surgery (BCS), magnetic resonance (MR) images aligned to accurately display intraoperative lesion locations can offer improved understanding of tumor extent and position relative to breast anatomy. Unfortunately, even under consistent supine conditions, soft tissue deformation compromises image-to-physical alignment and results in positional errors. METHODS: A finite element inverse modeling technique has been developed to nonrigidly register preoperative supine MR imaging data to the surgical scene for improved localization accuracy during surgery. Registration is driven using sparse data compatible with acquisition during BCS, including corresponding surface fiducials, sparse chest wall contours, and the intra-fiducial skin surface. Deformation predictions were evaluated at surface fiducial locations and subsurface tissue features that were expertly identified and tracked. Among n = 7 different human subjects, an average of 22 ± 3 distributed subsurface targets were analyzed in each breast volume. RESULTS: The average target registration error (TRE) decreased significantly when comparing rigid registration to this nonrigid approach (10.4 ± 2.3 mm vs 6.3 ± 1.4 mm TRE, respectively). When including a single subsurface feature as additional input data, the TRE significantly improved further (4.2 ± 1.0 mm TRE), and in a region of interest within 15 mm of a mock biopsy clip TRE was 3.9 ± 0.9 mm. CONCLUSION: These results demonstrate accurate breast deformation estimates based on sparse-data-driven model predictions. SIGNIFICANCE: The data suggest that a computational imaging approach can account for image-to-surgery shape changes to enhance surgical guidance during BCS.


Subject(s)
Mastectomy, Segmental , Surgery, Computer-Assisted , Humans , Magnetic Resonance Imaging/methods , Breast/diagnostic imaging , Breast/surgery , Surgery, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Algorithms
8.
Ther Adv Ophthalmol ; 13: 25158414211002400, 2021.
Article in English | MEDLINE | ID: mdl-35187398

ABSTRACT

Multimodality ophthalmic imaging systems aim to enhance the contrast, resolution, and functionality of existing technologies to improve disease diagnostics and therapeutic guidance. These systems include advanced acquisition and post-processing methods using optical coherence tomography (OCT), combined scanning laser ophthalmoscopy and OCT systems, adaptive optics, surgical guidance, and photoacoustic technologies. Here, we provide an overview of these ophthalmic imaging systems and their clinical and basic science applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...