Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(19): 12091-100, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27028665

ABSTRACT

UNLABELLED: High-surface-area π-conjugated polymeric networks have the potential to lend outstanding capacitance to supercapacitors because of the pronounced faradaic processes that take place across the dense intimate interface between active material and electrolytes. In this report, we describe how benzo[1,2-b:3,4-b':5,6-b″]trithiophene (BTT) and tris(ethylenedioxythiophene)benzo[1,2-b:3,4-b':5,6-b″]trithiophene (TEBTT) can serve as 2D (trivalent) building blocks in the development of electropolymerized hierarchical π-conjugated frameworks with particularly high areal capacitance. In comparing electropolymerized networks of BTT, TEBTT, and their copolymers with EDOT, we show that TEBTT/EDOT-based copolymers, i.e., P(TEBTT/EDOT), can achieve higher areal capacitance (e.g., as high as 443.8 mF cm(-2) at 1 mA cm(-2)) than those achieved by their respective homopolymers (PTEBTT and PEDOT) in the same experimental conditions of electrodeposition (PTEBTT: 271.1 mF cm(-2) (at 1 mA cm(-2)) and PEDOT: 12.1 mF cm(-2) (at 1 mA cm(-2))). For example, P(TEBTT/EDOT)-based frameworks synthesized in a 1:1 monomer-to-comonomer ratio show a ca. 35× capacitance improvement over PEDOT. The high areal capacitance measured for P(TEBTT/EDOT)-based frameworks can be explained by the open, highly porous hierarchical morphologies formed during the electropolymerization step. With >70% capacitance retention over 1000 cycles (up to 89% achieved), both PTEBTT- and P(TEBTT/EDOT)-based frameworks are resilient to repeated electrochemical cycling and can be considered promising systems for high life cycle capacitive electrode applications.

2.
Chemphyschem ; 16(8): 1712-8, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-25827354

ABSTRACT

The thermal stability and molecular order in monolayers of two organic semiconductors, PBI-PA and PBI-alkyl, based on perylene derivatives with an identical molecular structure except for an anchor group for attachment to the substrate in PBI-PA, are reported. In situ X-ray reflectivity measurements are used to follow the stability of these monolayers in terms of order and thickness as temperature is increased. Films have thicknesses corresponding approximately to the length of one molecule; molecules stand upright on the substrate with a defined structure. PBI-PA monolayers have a high degree of order at room temperature and a stable film exists up to 250 °C, but decomposes rapidly above 300 °C. In contrast, stable physisorbed PBI-alkyl monolayers only exist up to 100 °C. Above the bulk melting point at 200 °C no more order exists. The results encourage using anchor groups in monolayers for various applications as it allows enhanced stability at the interface with the substrate.


Subject(s)
Perylene/analogs & derivatives , Semiconductors , Microscopy, Atomic Force , Perylene/chemistry , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...