Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Neuron ; 112(5): 772-785.e9, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38141605

ABSTRACT

Lack of behavioral suppression typifies substance use disorders, yet the neural circuit underpinnings of drug-induced behavioral disinhibition remain unclear. Here, we employ deep-brain two-photon calcium imaging in heroin self-administering mice, longitudinally tracking adaptations within a paraventricular thalamus to nucleus accumbens behavioral inhibition circuit from the onset of heroin use to reinstatement. We find that select thalamo-accumbal neuronal ensembles become profoundly hypoactive across the development of heroin seeking and use. Electrophysiological experiments further reveal persistent adaptations at thalamo-accumbal parvalbumin interneuronal synapses, whereas functional rescue of these synapses prevents multiple triggers from initiating reinstatement of heroin seeking. Finally, we find an enrichment of µ-opioid receptors in output- and cell-type-specific paraventricular thalamic neurons, which provide a mechanism for heroin-induced synaptic plasticity and behavioral disinhibition. These findings reveal key circuit adaptations that underlie behavioral disinhibition in opioid dependence and further suggest that recovery of this system would reduce relapse susceptibility.


Subject(s)
Heroin , Opioid-Related Disorders , Rats , Mice , Animals , Heroin/pharmacology , Rats, Sprague-Dawley , Self Administration/methods , Neurons , Nucleus Accumbens/physiology
3.
Nat Commun ; 13(1): 6865, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369508

ABSTRACT

Suppression of dangerous or inappropriate reward-motivated behaviors is critical for survival, whereas therapeutic or recreational opioid use can unleash detrimental behavioral actions and addiction. Nevertheless, the neuronal systems that suppress maladaptive motivated behaviors remain unclear, and whether opioids disengage those systems is unknown. In a mouse model using two-photon calcium imaging in vivo, we identify paraventricular thalamostriatal neuronal ensembles that are inhibited upon sucrose self-administration and seeking, yet these neurons are tonically active when behavior is suppressed by a fear-provoking predator odor, a pharmacological stressor, or inhibitory learning. Electrophysiological, optogenetic, and chemogenetic experiments reveal that thalamostriatal neurons innervate accumbal parvalbumin interneurons through synapses enriched with calcium permeable AMPA receptors, and activity within this circuit is necessary and sufficient for the suppression of sucrose seeking regardless of the behavioral suppressor administered. Furthermore, systemic or intra-accumbal opioid injections rapidly dysregulate thalamostriatal ensemble dynamics, weaken thalamostriatal synaptic innervation of downstream neurons, and unleash reward-seeking behaviors in a manner that is reversed by genetic deletion of thalamic µ-opioid receptors. Overall, our findings reveal a thalamostriatal to parvalbumin interneuron circuit that is both required for the suppression of reward seeking and rapidly disengaged by opioids.


Subject(s)
Analgesics, Opioid , Parvalbumins , Mice , Animals , Analgesics, Opioid/pharmacology , Calcium , Reward , Sucrose
4.
Alcohol ; 100: 41-56, 2022 05.
Article in English | MEDLINE | ID: mdl-35181404

ABSTRACT

Alcohol use disorder (AUD) is frequently comorbid with mood disorders, and these co-occurring neuropsychiatric disorders contribute to the development and maintenance of alcohol dependence and relapse. In preclinical models, mice chronically exposed to alcohol display anxiety-like and depressive-like behaviors during acute withdrawal and protracted abstinence. However, in total, results from studies using voluntary alcohol-drinking paradigms show variable behavioral outcomes in assays measuring negative affective behaviors. Thus, the main objective of this review is to summarize the literature on the variability of negative affective behaviors in mice after chronic alcohol exposure. We compare the behavioral phenotypes that emerge during abstinence across different exposure models, including models of alcohol and stress interactions. The complicated outcomes from these studies highlight the difficulties of assessing negative affective behaviors in mouse models designed for the study of AUD. We discuss new behavioral assays, comprehensive platforms, and unbiased machine-learning algorithms as promising approaches to better understand the interaction between alcohol and negative affect in mice. New data-driven approaches in the understanding of mouse behavior hold promise for improving the identification of mechanisms, cell subtypes, and neurocircuits that mediate negative affect. In turn, improving our understanding of the neurobehavioral basis of alcohol-associated negative affect will provide a platform to test hypotheses in mouse models that aim to improve the development of more effective strategies for treating individuals with AUD and co-occurring mood disorders.


Subject(s)
Alcohol Drinking , Alcoholism , Affect , Alcohol Abstinence , Alcohol Drinking/psychology , Alcoholism/psychology , Animals , Anxiety/psychology , Anxiety Disorders/psychology , Ethanol , Mice
5.
Nat Commun ; 12(1): 5080, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34426574

ABSTRACT

Bed nucleus of the stria terminalis (BNST) neurons that synthesize corticotropin-releasing factor (CRF) drive binge alcohol drinking and anxiety. Here, we found that female C57BL/6J mice binge drink more than males and have greater basal BNSTCRF neuron excitability and synaptic excitation. We identified a dense VGLUT2 + synaptic input from the paraventricular thalamus (PVT) that releases glutamate directly onto BNSTCRF neurons but also engages a large BNST interneuron population to ultimately inhibit BNSTCRF neurons, and this polysynaptic PVTVGLUT2-BNSTCRF circuit is more robust in females than males. Chemogenetic inhibition of the PVTBNST projection promoted binge alcohol drinking only in female mice, while activation reduced avoidance behavior in both sexes. Lastly, repeated binge drinking produced a female-like phenotype in the male PVT-BNSTCRF excitatory synapse without altering the function of PVTBNST neurons per se. Our data describe a complex, feedforward inhibitory PVTVGLUT2-BNSTCRF circuit that is sex-dependent in its function, behavioral roles, and alcohol-induced plasticity.


Subject(s)
Alcohol Drinking/pathology , Avoidance Learning , Corticotropin-Releasing Hormone/metabolism , Limbic System/pathology , Neurons/pathology , Synapses/pathology , Thalamus/pathology , Alcohol Drinking/physiopathology , Animals , Anxiety/physiopathology , Behavior, Animal , Excitatory Postsynaptic Potentials , Female , Glutamic Acid/metabolism , Inhibitory Postsynaptic Potentials , Integrases/metabolism , Limbic System/physiopathology , Male , Mice, Inbred C57BL , Phenotype , Septal Nuclei/pathology , Septal Nuclei/physiopathology , Sex Characteristics , Thalamus/physiopathology
6.
Neuropharmacology ; 182: 108396, 2021 01.
Article in English | MEDLINE | ID: mdl-33181147

ABSTRACT

Stress is a risk factor that plays a considerable role in the development and maintenance of alcohol (ethanol) abuse and relapse. Preclinical studies examining ethanol-stress interactions have demonstrated elevated ethanol drinking, cognitive deficits, and negative affective behaviors in mice. However, the neural adaptations in prefrontal cortical regions that drive these aberrant behaviors produced by ethanol-stress interactions are unknown. In this study, male C57BL/6J mice were exposed to chronic intermittent ethanol (CIE) and repeated forced swim stress (FSS). After two cycles of CIE x FSS, brain slices containing the prelimbic (PrL) and infralimbic (IfL) cortex were prepared for analysis of adaptations in dendritic spines and synaptic plasticity. In the PrL cortex, total spine density was increased in mice exposed to CIE. Immediately following induction of long-term potentiation (LTP), the fEPSP slope was increased in the PrL of CIE x FSS treated mice, indicative of a presynaptic adaptation on post-tetanic potentiation (PTP). In the IfL cortex, CIE exposure regardless of FSS experience resulted in an increase in spine density. FSS alone or when combined with CIE exposure increased PTP following LTP induction. Repeated FSS episodes increased IfL cortical paired-pulse facilitation, a second measure of presynaptic plasticity. In summary, CIE exposure resulted in structural adaptations while repeated stress exposure drove metaplastic changes in presynaptic function, demonstrating distinct morphological and functional changes in PrL and IfL cortical neurons. Thus, the structural and functional adaptations may be one mechanism underlying the development of excessive drinking and cognitive deficits associated with ethanol-stress interactions.


Subject(s)
Ethanol/administration & dosage , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Prefrontal Cortex/drug effects , Prefrontal Cortex/pathology , Stress, Psychological/pathology , Administration, Inhalation , Animals , Ethanol/toxicity , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Male , Mice , Mice, Inbred C57BL , Random Allocation , Stress, Psychological/psychology
7.
Transl Psychiatry ; 10(1): 414, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33247097

ABSTRACT

Mood disorders are often comorbid with alcohol use disorder (AUD) and play a considerable role in the development and maintenance of alcohol dependence and relapse. Because of this high comorbidity, it is necessary to determine shared and unique genetic factors driving heavy drinking and negative affective behaviors. In order to identify novel pharmacogenetic targets, a bioinformatics analysis was used to quantify the expression of amygdala K+ channel genes that covary with anxiety-related phenotypes in the well-phenotyped and fully sequenced family of BXD strains. We used a model of stress-induced escalation of drinking in alcohol-dependent mice to measure negative affective behaviors during abstinence. A pharmacological approach was used to validate the key bioinformatics findings in alcohol-dependent, stressed mice. Amygdalar expression of Kcnn3 correlated significantly with 40 anxiety-associated phenotypes. Further examination of Kcnn3 expression revealed a strong eigentrait for anxiety-like behaviors and negative correlations with binge-like and voluntary alcohol drinking. Mice treated with chronic intermittent alcohol exposure and repeated swim stress consumed more alcohol in their home cages and showed hypophagia on the novelty-suppressed feeding test during abstinence. Pharmacologically targeting Kcnn gene products with the KCa2 (SK) channel-positive modulator 1-EBIO decreased drinking and reduced feeding latency in alcohol-dependent, stressed mice. Collectively, these validation studies provide central nervous system links into the covariance of stress, negative affective behaviors, and AUD in the BXD strains. Further, the bioinformatics discovery tool is effective in identifying promising targets (i.e., KCa2 channels) for treating alcohol dependence exacerbated by comorbid mood disorders.


Subject(s)
Alcoholism , Behavior, Animal , Computational Biology , Small-Conductance Calcium-Activated Potassium Channels , Affect , Alcohol Drinking , Animals , Anxiety , Ethanol , Mice
8.
Alcohol ; 88: 91-99, 2020 11.
Article in English | MEDLINE | ID: mdl-32777473

ABSTRACT

Alcohol use disorder is highly comorbid with other neuropsychiatric disorders such as depression and anxiety. Importantly, women and men are affected differentially by heavy drinking, with women experiencing longer negative affective states after intoxication and increased likelihood to present with comorbid mood or anxiety disorders. In rodents, several studies using different alcohol administration models have shown the development of depressive-like or anxiety-like phenotypes that emerge during abstinence. In this study, we compared the emergence of negative affective behaviors during abstinence from 7 weeks of two-bottle choice intermittent access to 20% alcohol in male and female C57BL/6J mice, a drinking paradigm little studied in this context. Half of the mice were tested 24 hours into abstinence on the elevated zero maze and 19-20 days into abstinence in a novel object in the home cage encounter test. The other half of the mice were tested 27-28 days into abstinence with the novelty-suppressed feeding test. As expected, females drank more than males across the 7 weeks of access to alcohol. Drinking history did not affect performance on these tasks, with the exception of increasing the number of open arm entries on the elevated zero maze. Interestingly, in alcohol-naïve mice, females showed fewer anxiety-like behaviors than males in the elevated zero maze and the novelty-suppressed feeding test. Our results suggest that the intermittent access model does not reliably induce negative affective behaviors on these tasks, and that behavior in female and male mice differs across these tests. Rather, intermittent alcohol drinking may induce a mild form of behavioral disinhibition. Thus, the model of alcohol access is a critical factor in determining the appearance of behavioral disturbances that emerge during abstinence.


Subject(s)
Alcoholism , Anxiety , Ethanol/adverse effects , Mood Disorders/chemically induced , Alcohol Drinking , Alcoholism/complications , Animals , Anxiety/chemically induced , Female , Male , Mice , Mice, Inbred C57BL
9.
Neuropharmacology ; 138: 10-19, 2018 08.
Article in English | MEDLINE | ID: mdl-29775679

ABSTRACT

Currently available pharmacotherapies for treating alcohol use disorder (AUD) suffer from deleterious side effects and are not efficacious in diverse populations. Clinical and preclinical studies provide evidence that the Kcnq family of genes that encode KV7 channels influence alcohol intake and dependence. KV7 channels are a class of slowly activating voltage-dependent K+ channels that regulate neuronal excitability. Studies indicate that the KV7 channel positive modulator retigabine can decrease dopaminergic neuron firing, alter dopamine (DA) release, and reduce alcohol intake in heavy drinking rodents. Given the critical nature of ventral tegmental area (VTA) DA to the addiction process and predominant expression of Kcnq4 in DA neurons, we investigated the role of midbrain Kcnq genes and KV7 channels in the VTA of genetically diverse mice and long-term heavy drinking rats, respectively. Integrative bioinformatics analysis identified negative correlations between midbrain Kcnq4 expression and alcohol intake and seeking behaviors. Kcnq4 expression levels were also correlated with dopaminergic-related phenotypes in BXD strains, and Kcnq4 was present in support intervals for alcohol sensitivity and alcohol withdrawal severity QTLs in rodents. Pharmacological validation studies revealed that VTA KV7 channels regulate excessive alcohol intake in rats with a high-drinking phenotype. Administration of a novel and selective KV7.2/4 channel positive modulator also reduced alcohol drinking in rats. Together, these findings indicate that midbrain Kcnq4 expression regulates alcohol-related behaviors in genetically diverse mice and provide evidence that KV7.4 channels are a critical mediator of excessive alcohol drinking.


Subject(s)
Alcohol-Related Disorders/metabolism , KCNQ Potassium Channels/metabolism , Ventral Tegmental Area/metabolism , Alcohol Deterrents/pharmacology , Alcohol Drinking/drug therapy , Alcohol Drinking/metabolism , Alcohol-Related Disorders/drug therapy , Animals , Dopamine/metabolism , Drug-Seeking Behavior/drug effects , Drug-Seeking Behavior/physiology , Female , Genetic Predisposition to Disease , Male , Mice , Motor Activity/drug effects , Motor Activity/physiology , Rats, Wistar , Ventral Tegmental Area/drug effects
10.
Handb Exp Pharmacol ; 248: 311-343, 2018.
Article in English | MEDLINE | ID: mdl-29374839

ABSTRACT

Neural mechanisms underlying alcohol use disorder remain elusive, and this lack of understanding has slowed the development of efficacious treatment strategies for reducing relapse rates and prolonging abstinence. While synaptic adaptations produced by chronic alcohol exposure have been extensively characterized in a variety of brain regions, changes in intrinsic excitability of critical projection neurons are understudied. Accumulating evidence suggests that prolonged alcohol drinking and alcohol dependence produce plasticity of intrinsic excitability as measured by changes in evoked action potential firing and after-hyperpolarization amplitude. In this chapter, we describe functional changes in cell firing of projection neurons after long-term alcohol exposure that occur across species and in multiple brain regions. Adaptations in calcium-activated (KCa2), voltage-dependent (KV7), and G protein-coupled inwardly rectifying (Kir3 or GIRK) potassium channels that regulate the evoked firing and after-hyperpolarization parallel functional changes in intrinsic excitability induced by chronic alcohol. Moreover, there are strong genetic links between alcohol-related behaviors and genes encoding KCa2, KV7, and GIRK channels, and pharmacologically targeting these channels reduces alcohol consumption and alcohol-related behaviors. Together, these studies demonstrate that chronic alcohol drinking produces adaptations in KCa2, KV7, and GIRK channels leading to impaired regulation of the after-hyperpolarization and aberrant cell firing. Correcting the deficit in the after-hyperpolarization with positive modulators of KCa2 and KV7 channels and altering the GIRK channel binding pocket to block the access of alcohol represent a potentially highly effective pharmacological approach that can restore changes in intrinsic excitability and reduce alcohol consumption in affected individuals.


Subject(s)
Action Potentials , Alcoholism , Neurons/drug effects , Potassium Channels/physiology , Alcohol Drinking , Ethanol/pharmacology , Humans
11.
Handb Exp Pharmacol ; 248: 619, 2018.
Article in English | MEDLINE | ID: mdl-30810861

ABSTRACT

In section 8.1 on the 10th line in first paragraph the reference citation Mateos-Aparicio et al. 2014 is incorrect.

12.
Pharmacogenomics ; 18(6): 555-570, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28346058

ABSTRACT

Inherited genetic variants contribute to risk factors for developing an alcohol use disorder, and polymorphisms may inform precision medicine strategies for treating alcohol addiction. Targeting genetic mutations linked to alcohol phenotypes has provided promising initial evidence for reducing relapse rates in alcoholics. Although successful in some studies, there are conflicting findings and the reports of adverse effects may ultimately limit their clinical utility, suggesting that novel pharmacogenetic targets are necessary to advance precision medicine approaches. Here, we describe promising novel genetic variants derived from preclinical models of alcohol consumption and dependence that may uncover disease mechanisms that drive uncontrolled drinking and identify novel pharmacogenetic targets that facilitate therapeutic intervention for the treatment of alcohol use disorder.


Subject(s)
Alcohol-Related Disorders/drug therapy , Alcohol-Related Disorders/genetics , Models, Animal , Pharmacogenomic Testing , Pharmacogenomic Variants , Polymorphism, Single Nucleotide , Animals , Humans , Mutation , Neuroimmunomodulation/genetics , Potassium Channels/genetics , Precision Medicine
13.
Biol Psychiatry ; 81(11): 930-940, 2017 06 01.
Article in English | MEDLINE | ID: mdl-27113502

ABSTRACT

BACKGROUND: Corticotropin-releasing factor (CRF) signaling at the CRF1 receptor (CRF1R) in the ventral tegmental area (VTA) can modulate ethanol consumption in rodents. However, the effects of binge-like ethanol drinking on this system have not been thoroughly characterized, and little is known about the role of CRF2R or the CRF neurocircuitry involved. METHODS: The effects of binge-like ethanol consumption on the VTA CRF system were assessed following drinking-in-the-dark procedures. Intra-VTA infusions of selective CRF1R and/or CRF2R compounds were employed to assess the contributions of these receptors in modulating binge-like ethanol consumption (n = 89). To determine the potential role of CRF projections from the bed nucleus of the stria terminalis (BNST) to the VTA, CRF neurons in this circuit were chemogenetically inhibited (n = 32). Binge-induced changes in VTA CRF system protein and messenger RNA were also assessed (n = 58). RESULTS: Intra-VTA antagonism of CRF1R and activation of CRF2R resulted in decreased ethanol intake, which was eliminated by simultaneous blockade of both receptors. Chemogenetic inhibition of local CRF neurons in the VTA did not alter binge-like ethanol drinking, but inhibition of VTA-projecting CRF neurons from the BNST significantly reduced intake. CONCLUSIONS: We provide novel evidence that 1) blunted binge-like ethanol consumption stemming from CRF1R blockade requires intact CRF2R signaling, and CRF2R activation reduces binge-like drinking; 2) inhibiting VTA-projecting BNST CRF neurons attenuates binge-like drinking; and 3) binge-like ethanol drinking alters protein and messenger RNA associated with the VTA-CRF system. These data suggest that ethanol-induced activation of BNST-to-VTA CRF projections is critical in driving binge-like ethanol intake.


Subject(s)
Binge Drinking/physiopathology , Corticotropin-Releasing Hormone/physiology , Neural Pathways/physiopathology , Receptors, Corticotropin-Releasing Hormone/physiology , Ventral Tegmental Area/physiopathology , Acenaphthenes/pharmacology , Animals , Clozapine/analogs & derivatives , Clozapine/pharmacology , Corticotropin-Releasing Hormone/genetics , Designer Drugs , Male , Mice , Mice, Transgenic , Pyrimidines/pharmacology , Pyrroles/pharmacology , Receptors, Corticotropin-Releasing Hormone/agonists , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Septal Nuclei/drug effects , Septal Nuclei/physiopathology , Urocortins/pharmacology , Ventral Tegmental Area/drug effects
14.
Alcohol ; 58: 33-45, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27432260

ABSTRACT

Alcohol (ethanol) dependence is a chronic relapsing brain disorder partially influenced by genetics and characterized by an inability to regulate harmful levels of drinking. Emerging evidence has linked genes that encode KV7, KIR, and KCa2 K+ channels with variation in alcohol-related behaviors in rodents and humans. This led us to experimentally test relations between K+ channel genes and escalation of drinking in a chronic-intermittent ethanol (CIE) exposure model of dependence in BXD recombinant inbred strains of mice. Transcript levels for K+ channel genes in the prefrontal cortex (PFC) and nucleus accumbens (NAc) covary with voluntary ethanol drinking in a non-dependent cohort. Transcripts that encode KV7 channels covary negatively with drinking in non-dependent BXD strains. Using a pharmacological approach to validate the genetic findings, C57BL/6J mice were allowed intermittent access to ethanol to establish baseline consumption before they were treated with retigabine, an FDA-approved KV7 channel positive modulator. Systemic administration significantly reduced drinking, and consistent with previous evidence, retigabine was more effective at reducing voluntary consumption in high-drinking than low-drinking subjects. We evaluated the specific K+ channel genes that were most sensitive to CIE exposure and identified a gene subset in the NAc and PFC that were dysregulated in the alcohol-dependent BXD cohort. CIE-induced modulation of nine genes in the NAc and six genes in the PFC covaried well with the changes in drinking induced by ethanol dependence. Here we identified novel candidate genes in the NAc and PFC that are regulated by ethanol dependence and correlate with voluntary drinking in non-dependent and dependent BXD mice. The findings that Kcnq expression correlates with drinking and that retigabine reduces consumption suggest that KV7 channels could be pharmacogenetic targets to treat individuals with alcohol addiction.


Subject(s)
Alcohol Drinking/genetics , Alcohol Drinking/prevention & control , Pharmacogenetics/methods , Potassium Channels/genetics , Alcohol Drinking/metabolism , Animals , Carbamates/therapeutic use , Female , Gene Expression Regulation , Male , Membrane Transport Modulators/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Phenylenediamines/therapeutic use , Potassium Channels/biosynthesis
15.
Brain Behav Immun ; 51: 258-267, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26365025

ABSTRACT

Proinflammatory cytokines have been implicated in alcohol-induced neurodegeneration, but the role of the neuroimmune system in alcohol related behaviors has only recently come to the forefront. Herein, the effects of binge-like drinking on IL-1ß mRNA and immunoreactivity within the amygdala were measured following the "drinking in the dark" (DID) paradigm, a model of binge-like ethanol drinking in C57BL/6J mice. Moreover, the role of IL-1 receptor signaling in the amygdala on ethanol consumption was assessed. Results indicated that a history of binge-like ethanol drinking promoted a significant increase of IL-1ß mRNA expression within the amygdala, and immunohistochemistry analyses revealed that the basolateral amygdala (BLA), but not central amygdala (CeA), exhibited significantly increased IL-1ß immunoreactivity. However, Fluoro-Jade® C labeling indicated that multiple cycles of the DID paradigm were not sufficient to elicit neuronal death. Bilateral infusions of IL-1 receptor antagonist (IL-1Ra) reduced ethanol consumption when infused into the BLA but not the CeA. These observations were specific to ethanol drinking as the IL-1Ra did not alter either sucrose drinking or open-field locomotor activity. The current findings highlight a specific role for IL-1 receptor signaling in modulating binge-like ethanol consumption and indicate that proinflammatory cytokines can be induced prior to dependence or any evidence of neuronal cell death. These findings provide a framework in which to understand how neuroimmune adaptations may alter ethanol consumption and therein contribute to alcohol abuse.


Subject(s)
Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/metabolism , Binge Drinking/metabolism , Ethanol/administration & dosage , Interleukin-1beta/metabolism , Receptors, Interleukin-1/metabolism , Animals , Encephalitis/metabolism , Locomotion/drug effects , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Receptors, Interleukin-1/antagonists & inhibitors , Signal Transduction/drug effects
16.
Addict Biol ; 21(4): 835-46, 2016 07.
Article in English | MEDLINE | ID: mdl-25975524

ABSTRACT

Binge ethanol drinking is a highly pervasive and destructive behavior yet the underlying neurobiological mechanisms remain poorly understood. Recent work suggests that overlapping neurobiological mechanisms modulate feeding disorders and excessive ethanol intake, and converging evidence indicates that the melanocortin (MC) system may be a promising candidate. The aims of the present work were to examine how repeated binge-like ethanol drinking, using the 'drinking in the dark' (DID) protocol, impacts key peptides within the MC system and if site-specific manipulation of MC receptor (MCR) signaling modulates binge-like ethanol drinking. Male C57BL/6J mice were exposed to one, three or six cycles of binge-like ethanol, sucrose or water drinking, after which brain tissue was processed via immunohistochemistry (IHC) for analysis of key MC peptides, including alpha-melanocyte stimulating hormone (α-MSH) and agouti-related protein (AgRP). Results indicated that α-MSH expression was selectively decreased, while AgRP expression was selectively increased, within specific hypothalamic subregions following repeated binge-like ethanol drinking. To further explore this relationship, we used site-directed drug delivery techniques to agonize or antagonize MCRs within the lateral hypothalamus (LH). We found that the nonselective MCR agonist melanotan-II (MTII) blunted, while the nonselective MCR antagonist AgRP augmented, binge-like ethanol consumption when delivered into the LH. As these effects were region-specific, the present results suggest that a more thorough understanding of the MC neurocircuitry within the hypothalamus will help provide novel insight into the mechanisms that modulate excessive binge-like ethanol intake and may help uncover new therapeutic targets aimed at treating alcohol abuse disorders.


Subject(s)
Binge Drinking/physiopathology , Hypothalamus/drug effects , Receptors, Melanocortin/drug effects , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects
17.
Alcohol Clin Exp Res ; 39(8): 1406-16, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26110576

ABSTRACT

BACKGROUND: In recent years, much attention has been given to the lack of reproducibility in biomedical research, particularly in preclinical animal studies. This is a problem that also plagues the alcohol research field, particularly in consistent consumption in animal models of alcohol use disorders. One often overlooked factor that could affect reproducibility is the maintenance diet used in preclinical studies. METHODS: Herein, 2 well-established models of alcohol consumption, the "drinking in the dark" (DID) procedure and the continuous 2-bottle choice (C2BC) paradigm, were employed to determine the effects of diet on ethanol (EtOH) consumption. Male C57BL/6J mice were given 1 of 6 standard rodent chow diets obtained from Purina LabDiet(®) , Inc. (Prolab(®) RMH 3000) or Harlan(®) Laboratories, Inc. (Teklad Diets T.2916, T.2918, T.2920X, T.7912, or T.8940). A separate group of animals were used to test dietary effects on EtOH pharmacokinetics and behavioral measures following intraperitoneal (IP) injections of various doses of EtOH. RESULTS: Mice eating Harlan diets T.2916 (H2916) and T.2920X (H2920) consumed significantly less EtOH and exhibited lower blood EtOH concentrations (BECs) during DID; however, during C2BC, animals maintained on Harlan T.7912 (H7912) consumed more EtOH and had a higher EtOH preference than the other diet groups. EtOH consumption levels did not stem from changes in alcohol pharmacokinetics, as a separate group of animals administered EtOH IP showed no difference in BECs. However, animals on Harlan diet T.2920X (H2920) were more sensitive to alcohol-induced locomotor activity in an open-field task. No diet-dependent differences were seen in alcohol-induced sedation as measured with loss of righting reflex. CONCLUSIONS: Although these data do not identify a specific mechanism, together, they clearly show that the maintenance diet impacts EtOH consumption. It is incumbent upon the research community to consider the importance of describing nutritional information in methods, which may help decrease interlaboratory reproducibility issues.


Subject(s)
Alcohol Drinking , Animal Feed , Binge Drinking , Choice Behavior , Diet , Ethanol/administration & dosage , Alcohol Drinking/physiopathology , Animal Feed/standards , Animals , Binge Drinking/physiopathology , Choice Behavior/drug effects , Choice Behavior/physiology , Diet/standards , Eating/drug effects , Eating/physiology , Male , Mice , Mice, Inbred C57BL
18.
Nat Neurosci ; 18(4): 545-52, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25751534

ABSTRACT

Binge alcohol drinking is a tremendous public health problem because it leads to the development of numerous pathologies, including alcohol abuse and anxiety. It is thought to do so by hijacking brain systems that regulate stress and reward, including neuropeptide Y (NPY) and corticotropin-releasing factor (CRF). The central actions of NPY and CRF have opposing functions in the regulation of emotional and reward-seeking behaviors; thus, dysfunctional interactions between these peptidergic systems could be involved in the development of these pathologies. We used converging physiological, pharmacological and chemogenetic approaches to identify a precise neural mechanism in the bed nucleus of the stria terminalis (BNST), a limbic brain region involved in pathological reward and anxiety behaviors, underlying the interactions between NPY and CRF in the regulation of binge alcohol drinking in both mice and monkeys. We found that NPY Y1 receptor (Y1R) activation in the BNST suppressed binge alcohol drinking by enhancing inhibitory synaptic transmission specifically in CRF neurons via a previously unknown Gi-mediated, PKA-dependent postsynaptic mechanism. Furthermore, chronic alcohol drinking led to persistent alterations in Y1R function in the BNST of both mice and monkeys, highlighting the enduring, conserved nature of this effect across mammalian species. Together, these data provide both a cellular locus and signaling framework for the development of new therapeutics for treatment of neuropsychiatric diseases, including alcohol use disorders.


Subject(s)
Behavior, Animal/drug effects , Binge Drinking/metabolism , Corticotropin-Releasing Hormone/metabolism , Neural Inhibition/physiology , Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/metabolism , Septal Nuclei/metabolism , Signal Transduction/physiology , Animals , Binge Drinking/drug therapy , Circadian Rhythm/drug effects , Disease Models, Animal , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Neural Inhibition/drug effects , Receptors, Neuropeptide Y/agonists , Receptors, Neuropeptide Y/antagonists & inhibitors , Septal Nuclei/drug effects
19.
Alcohol Clin Exp Res ; 38(9): 2377-86, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25130590

ABSTRACT

BACKGROUND: A growing body of literature suggests that epigenetic mechanisms, including histone acetylation, may play key roles in drug abuse and the development of addiction. Experiments in this study were designed to investigate the role of histone acetylation in ethanol (EtOH)-induced locomotor sensitization. METHODS: Immunohistochemical, Western blotting, and site-directed pharmacological techniques were used to explore the roles of histone acetylation at histone H3 (acH3K9) in both the expression of and acquisition of EtOH-induced locomotor sensitization. A commonly used sensitization protocol, in which animals were exposed to repeated injections of a low dose of EtOH while in their home cage, was used to examine this behavioral phenomenon. Additionally, site-directed administration of the histone deacetylase inhibitor (HDACi) Trichostatin A (TSA), in the absence of repeated EtOH injections, was used to examine the role of hyperacetylation in the nucleus accumbens (NAC) shell in EtOH-induced locomotor sensitization. RESULTS: Sensitized mice displayed elevated acH3K9 immunoreactivity (IR) localized to the shell of the NAC. This augmentation in acH3K9 IR was confirmed, in a separate experiment, using Western blot analyses. Next, repeated intra-accumbal infusions of TSA, in the absence of repeated EtOH injections, were sufficient to induce an augmented locomotor response to a later injection of a low dose (2.0 g/kg, intraperitoneally) of EtOH, indicative of cross-sensitization to this locomotor stimulation between TSA and EtOH. Finally, a local infusion of TSA into the shell of the accumbens was also associated with a significant increase in acH3K9 IR within this region. CONCLUSIONS: Together, the present observations suggest that histone acetylation, particularly within the shell of the NAC, is important for the development and expression of EtOH-induced locomotor sensitization.


Subject(s)
Ethanol/pharmacology , Histones/metabolism , Motor Activity/drug effects , Motor Activity/physiology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Acetylation/drug effects , Animals , Male , Mice , Mice, Inbred DBA
20.
Alcohol Clin Exp Res ; 37(10): 1688-95, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23647551

ABSTRACT

BACKGROUND: Recently, procedures have been developed to model specific facets of human alcohol abuse disorders, including those that model excessive binge-like drinking (i.e., "drinking-in-the-dark," or DID procedures) and excessive dependence-like drinking (i.e., intermittent ethanol [EtOH] vapor exposure). Similar neuropeptide systems modulate excessive EtOH drinking stemming from both procedures, raising the possibility that both paradigms are actually modeling the same phenotypes and triggering the same central neuroplasticity. Therefore, the goal of this present project was to study the effects of a history of binge-like EtOH drinking, using DID procedures, on phenotypes that have previously been described with procedures to model dependence-like drinking. METHODS: Male C57BL/6J mice first experienced 0 to 10 four-day binge-like drinking episodes (3 days of rest between episodes). Beginning 24 hours after the final binge-like drinking session, mice were tested for anxiety-like behaviors (with elevated plus maze [EPM] and open-field locomotor activity tests), ataxia with the rotarod test, and sensitivity to handling-induced convulsions (HICs). One week later, mice began a 40-day 2-bottle (water vs. EtOH) voluntary consumption test with concentration ranging from 10 to 20% (v/v) EtOH. RESULTS: A prior history of binge-like EtOH drinking significantly increased subsequent voluntary EtOH consumption and preference, effects most robust in groups that initially experienced 6 or 10 binge-like drinking episodes and completely absent in mice that experienced 1 binge-like drinking episode. Conversely, a history of binge-like EtOH drinking did not influence anxiety-like behaviors, ataxia, or HICs. CONCLUSIONS: Excessive EtOH drinking stemming from DID procedures does not initially induce phenotypes consistent with a dependence-like state. However, the subsequent increases in voluntary EtOH consumption and preference that become more robust following repeated episodes of binge-like EtOH drinking may reflect the early stages of EtOH dependence, suggesting that DID procedures may be ideal for studying the transition to EtOH dependence.


Subject(s)
Binge Drinking/diagnosis , Binge Drinking/psychology , Darkness , Ethanol/administration & dosage , Phenotype , Alcohol Drinking/psychology , Animals , Male , Mice , Mice, Inbred C57BL , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...