Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 26(3): 249-64, 2001 May.
Article in English | MEDLINE | ID: mdl-11439114

ABSTRACT

The shoot apex of overwintering perennials ceases its morphogenetic activity at the end of the growing season and transforms into a bud which is dormant and freezing-tolerant. In birch (Betula pubescens) these events are triggered by short photoperiod, and involve the production of 1,3-beta-D-glucan containing sphincters on the plasmodesmata. As a result, all symplasmic pathways shut down. Here we show that breakage of bud dormancy by chilling involves restoration of the symplasmic organization of the meristem. This restoration is likely to be mediated by 1,3-beta-D-glucanase, which was present in small spherosome-like vacuoles that arose de novo during dormancy induction. During chilling these vacuoles were displaced from the bulk cytoplasm to the cortical cytoplasm where they became aligned with the plasma membrane, often associated with plasmodesmata. At this stage the enzyme also appeared outside the vacuoles. During chilling, 1,3-beta-D-glucan disappeared from the plasmodesmal channels and wall sleeves, and the plasmodesmata regained the capacity for cell-cell transport, as demonstrated by microinjection of Lucifer Yellow CH and Fluorescein-tagged gibberellic acid. Collectively, the present experiments demonstrate that restoration of the symplasmic organization of the meristem is indispensable for the release of buds from dormancy and the assumption of a proliferation-competent state, and implicate 1,3-beta-D-glucanase action at the plasmodesmata. Based on these findings we propose a model for 'dormancy cycling' which depicts the meristem as passing through three sequential states of cellular communication with characteristic sensitivities to distinct environmental cues.


Subject(s)
Fabaceae/physiology , Meristem/physiology , Plant Shoots/physiology , Plants, Medicinal , beta-Glucans , Cell Communication , Cold Temperature , Fabaceae/cytology , Fabaceae/growth & development , Fabaceae/ultrastructure , Freezing , Glucans/metabolism , Plant Shoots/growth & development , Plant Shoots/ultrastructure , Plant Structures/metabolism , Vacuoles/metabolism
2.
Development ; 125(8): 1477-85, 1998 Apr.
Article in English | MEDLINE | ID: mdl-9502728

ABSTRACT

In plants, complex cellular interactions, which require the exchange of morphogenetic signals, underlie morphogenesis at the shoot apical meristem. Since all apical meristem cells are interconnected by plasmodesmata, we have investigated if symplasmic paths are available which may preferentially channel metabolites and potential morphogens in the apical meristem, and whether they could support both the formation of determinate appendages and the sustainment of an undifferentiated centre. Experiments in which the permeability of the symplasm was probed with fluorescent dye revealed that the tunica of the apical meristem of birch seedlings (Betula pubescence Ehrh.) is symplasmically compartmentalized into two concentric fields, which restrict the symplasmic diffusion of small potential morphogens to the cells inside their boundaries. A transient connection between the two fields was established early in a plastochron, potentiating the radial exchange of symplasmically diffusing signalling molecules. We suggest that the symplasmic subdivision of the tunica offers a means to unite cells into communication compartments, invoke boundary interactions between them, and shield the distal meristem cells from organogenesis. Electrophysiological measurements indicate that, in addition, the cells of these fields constitute metabolic working units. The relevance of these symplasmic fields for morphogenesis was established experimentally by treatment with short photoperiod, which induced breakdown of the fields into symplasmically isolated cells. Tannic acid staining and in situ immunolocalisation revealed that cell isolation was due to the activation of glucan synthase complexes intrinsic to sphincters. As a result callose plugs were formed on all plasmodesmata leading to morphogenetic deactivation.


Subject(s)
Meristem/physiology , Trees/growth & development , Cell Membrane Permeability , Diffusion , Electrophysiology , Fluorescent Dyes , Isoquinolines , Meristem/cytology , Meristem/ultrastructure , Morphogenesis , Photoperiod , Signal Transduction , Trees/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...