Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Comp Cytogenet ; 13(4): 367-382, 2019.
Article in English | MEDLINE | ID: mdl-31798796

ABSTRACT

Based on chromosomal, molecular and morphological analyses, two new Cacopsylla Ossiannilsson, 1970 species are described, C. lapponica S. Nokkala & Ch. Nokkala, sp. nov. and C. borealis S. Nokkala et Ch. Nokkala, sp. nov. (Hemiptera, Psylloidea). C. lapponica is a rare bisexual alpine species living on Vaccinium uliginosum Linnaeus, 1753 above tree line on northern hills, where it forms sympatric populations with C. myrtilli W. Wagner, 1947. So far, the species has been found in northern Finland, Utsjoki and Kilpisjärvi, and in northern Sweden, Abisko. The chromosome number in males is 2n = 12+X(0), characteristic of psyllids. The species is easily distinguished from C. myrtilli by its conspicuously smaller size mainly due to difference in wing size. Additional morphological differences are found in the length of antennae, female genital plates and male parameres. C. borealis, in turn, is a relatively common apomictic parthenogenetic species with 5n = 60 + XXXXX living on the same host plant, Ledum palustre Linnaeus, 1753, as C. ledi (Flor, 1861) and occasionally forming sympatric populations with it. No males have been recorded in C. borealis. Its distribution range reaches at least from northern Fennoscandia to Lake Baikal in the East. C. borealis can be distinguished from C. ledi by differences in the length and width of antennae, dark brown markings on the wing and female terminal structures. For molecular analysis, a 638 bp fragment of the mitochondrial COI gene was sequenced. C. lapponica differs from the cohabitating C. myrtilli by 20 fixed nucleotide substitutions (uncor rected p-distance 3.13 %), while C. borealis differs from C. ledi by 21 fixed nucleotide substitutions (uncorrected p-distance 3.29 %). Molecular phylogeny construction (ML and BI) reveals two highly divergent clades, one comprising two bisexual species, C. lapponica and C. fraudatrix Labina & Kuznetsova, 2012, and the other clade comprising the parthenogenetic species C. borealis, C. myrtilli, and C. ledi. Within this clade, C. borealis is more closely associated with C. myrtilli than with C. ledi.

2.
Ecol Evol ; 9(4): 1736-1749, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847069

ABSTRACT

The Cimicidae is a family of blood-dependent ectoparasites in which dispersion capacity is greatly associated with host movements. Bats are the ancestral and most prevalent hosts for cimicids. Cimicids have a worldwide distribution matching that of their hosts, but the global classification is incomplete, especially for species outside the most common Cimicidae taxa. In this study, we place a little-studied cimicid species, Bucimex chilensis, within a comprehensive molecular phylogeny of Cimicidae by sequencing the genomic regions of this and other closely related species. For this study, we collected B. chilensis females from Myotis chiloensis in Tierra del Fuego, 1,300 km further south than previously known southernmost distribution boundary. We also sequenced COI regions from Primicimex cavernis, a species which together with B. chilensis comprise the entire subfamily Primiciminae. Using Bayesian posterior probability and maximum-likelihood approaches, we found that B. chilensis and P. cavernis clustered close to each other in the molecular analyses, receiving support from similar morphological features, agreeing with the morphology-based taxonomic placement of the two species within the subfamily Primiciminae. We also describe a previously unrecognized morphological adaptation of the tarsal structure, which allows the austral bat ectoparasite, B. chilensis, to cling on to the pelage of its known host, the Chilean myotis (Myotis chiloensis). Through a morphological study and behavioral observation, we elucidate how this tarsal structure operates, and we hypothesize that by clinging in the host pelage, B. chilensis is able to disperse effectively to new areas despite low host density. This is a unique feature shared by P. cavernis, the only other species in Primiciminae.

3.
Zootaxa ; 4013(2): 287-92, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26623899

ABSTRACT

Clistopyga caramba sp. nov. Castillo & Sääksjärvi, collected from the tropical Andean-Amazonian interface in Peru, is described and illustrated. The new species is characterized by highly modified posterior metasomal tergites and a rare colour pattern of the metasoma. Two possible explanations for the bizarre metasomal morphology and colouration are proposed.


Subject(s)
Wasps/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Behavior, Animal , Body Size , Ecosystem , Female , Organ Size , Spiders/parasitology , Wasps/anatomy & histology , Wasps/growth & development , Wasps/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...