Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 226(5)2023 03 01.
Article in English | MEDLINE | ID: mdl-36806418

ABSTRACT

Working memory, the ability to actively maintain and manipulate information across time, is key to intelligent behavior. Because of the limited capacity of working memory, relevant information needs to be protected against distracting representations. Whether birds can resist distractors and safeguard memorized relevant information is unclear. We trained carrion crows in a delayed match-to-sample task to memorize an image while resisting other, interfering stimuli. We found that the repetition of the sample stimulus during the memory delay improved performance accuracy and accelerated reaction time relative to a reference condition with a neutral interfering stimulus. In contrast, the presentation of the image that constituted the subsequent non-match test stimulus mildly weakened performance. However, the crows' robust performance in this most demanding distractor condition indicates that sample information was actively protected from being overwritten by the distractor. These data show that crows can cognitively control and safeguard behaviorally relevant working memory contents.


Subject(s)
Crows , Memory, Short-Term , Animals , Cognition , Behavior, Animal , Fenbendazole
2.
Proc Natl Acad Sci U S A ; 119(49): e2205515119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36442123

ABSTRACT

Attention describes the ability to selectively process a particular aspect of the environment at the expense of others. Despite the significance of selective processing, the types and scopes of attentional mechanisms in nonprimate species remain underexplored. We trained four carrion crows in Posner spatial cueing tasks using two separate protocols where the attention-capturing cues are shown at different times before target onset at either the same or a different location as the impending target. To probe automatic bottom-up, or exogenous, attention, two naïve crows were tested with a cue that had no predictive value concerning the location of the subsequent target. To examine volitional top-down, or endogenous, attention, the other two crows were tested with the previously learned cues that predicted the impending target location. Comparing the performance for valid (cue and target at same location) and invalid (cue and target at opposing locations) cues in the nonpredictive cue condition showed a transient, mild reaction time advantage signifying exogenous attention. In contrast, there was a strong and long-lasting performance advantage for the valid conditions with predictive cues indicating endogenous attention. Together, these results demonstrate that crows possess two different attention mechanisms (exogenous and endogenous). These findings signify that crows possess a substantial attentional capacity and robust cognitive control over attention allocation.


Subject(s)
Crows , Animals , Cues , Learning , Reaction Time
3.
J Neurosci ; 41(18): 4060-4072, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33608384

ABSTRACT

The planning and execution of head-beak movements are vital components of bird behavior. They require integration of sensory input and internal processes with goal-directed motor output. Despite its relevance, the neurophysiological mechanisms underlying action planning and execution outside of the song system are largely unknown. We recorded single-neuron activity from the associative endbrain area nidopallium caudolaterale (NCL) of two male carrion crows (Corvus corone) trained to plan and execute head-beak movements in a spatial delayed response task. The crows were instructed to plan an impending movement toward one of eight possible targets on the left or right side of a touchscreen. In a fraction of trials, the crows were prompted to plan a movement toward a self-chosen target. NCL neurons signaled the impending motion direction in instructed trials. Tuned neuronal activity during motor planning categorically represented the target side, but also specific target locations. As a marker of intentional movement preparation, neuronal activity reliably predicted both target side and specific target location when the crows were free to select a target. In addition, NCL neurons were tuned to specific target locations during movement execution. A subset of neurons was tuned during both planning and execution period; these neurons experienced a sharpening of spatial tuning with the transition from planning to execution. These results show that the avian NCL not only represents high-level sensory and cognitive task components, but also transforms behaviorally-relevant information into dynamic action plans and motor execution during the volitional perception-action cycle of birds.SIGNIFICANCE STATEMENT Corvid songbirds have become exciting new models for understanding complex cognitive behavior. As a key neural underpinning, the endbrain area nidopallium caudolaterale (NCL) represents sensory and memory-related task components. How such representations are converted into goal-directed motor output remained unknown. In crows, we report that NCL neurons are involved in the planning and execution of goal-directed movements. NCL neurons prospectively signaled motion directions in instructed trials, but also when the crows were free to choose a target. NCL neurons showed a target-specific sharpening of tuning with the transition from the planning to the execution period. Thus, the avian NCL not only represents high-level sensory and cognitive task components, but also transforms relevant information into action plans and motor execution.


Subject(s)
Crows/physiology , Decision Making/physiology , Movement/physiology , Psychomotor Performance/physiology , Animals , Brain Mapping , Conditioning, Operant , Goals , Head Movements/physiology , Male , Neurons/physiology , Single-Cell Analysis , Telencephalon/physiology
4.
Science ; 369(6511): 1626-1629, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32973028

ABSTRACT

Subjective experiences that can be consciously accessed and reported are associated with the cerebral cortex. Whether sensory consciousness can also arise from differently organized brains that lack a layered cerebral cortex, such as the bird brain, remains unknown. We show that single-neuron responses in the pallial endbrain of crows performing a visual detection task correlate with the birds' perception about stimulus presence or absence and argue that this is an empirical marker of avian consciousness. Neuronal activity follows a temporal two-stage process in which the first activity component mainly reflects physical stimulus intensity, whereas the later component predicts the crows' perceptual reports. These results suggest that the neural foundations that allow sensory consciousness arose either before the emergence of mammals or independently in at least the avian lineage and do not necessarily require a cerebral cortex.


Subject(s)
Consciousness , Crows/physiology , Psychomotor Performance/physiology , Telencephalon/physiology , Animals , Neurons/physiology
5.
Curr Biol ; 29(16): 2616-2624.e4, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31378607

ABSTRACT

Birds are renowned for their excellent spatial cognition. Corvid songbirds, in particular, rely on explicit representation of spatial cues in memory when caching food and retrieving caches for later consumption. However, the neuronal correlates of flexible spatial memory abilities are largely unknown in birds. We therefore trained carrion crows (Corvus corone) on a spatial delayed-response task in which they had to maintain the variable location of a visual item for a few seconds in working memory. After the crows performed this task with high precision, we recorded single-cell activity from the associative endbrain area Nidopallium caudolaterale (NCL) in the behaving crows. A large fraction of NCL neurons were tuned to individual preferred locations and selectively maintained the spatial location of items in working memory. A comparison of firing rates with reaction times suggested that the majority of delay-selective neurons represented stored location information rather than motor preparation. Almost 30% of all recorded neurons were tuned during both visual presentation and memory delay, and their spatial tuning was significantly correlated. The population of recorded neurons stably maintained spatial information over the course of the working memory period. Importantly, the neural responses of spatially tuned neurons were relevant for the crows' choices and allowed a statistical classifier to predict the subsequently chosen target location in free-choice trials. Our findings demonstrate the pivotal role of the avian NCL in spatial working memory that is reminiscent of the function of the convergently evolved primate prefrontal cortex in spatial working memory.


Subject(s)
Crows/physiology , Memory, Short-Term/physiology , Neurons/physiology , Spatial Memory/physiology , Telencephalon/physiology , Animals , Male , Reaction Time/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...