Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 9: 965315, 2022.
Article in English | MEDLINE | ID: mdl-36579187

ABSTRACT

Green leaf volatiles (GLVs) cover a group of mainly C6-and C9-aldehydes, -alcohols and -esters. Their name refers to their characteristic herbal and fruity scent, which is similar to that of freshly cut grass or vegetables. Lipoxygenases (LOXs) catalyze the peroxidation of unsaturated fatty acids. The resulting hydroperoxy fatty acids are then cleaved into aldehydes and oxo acids by fatty acid hydroperoxide lyases (HPLs). Herein, we equipped the yeast Komagataella phaffii with recombinant genes coding for LOX and HPL, to serve as a biocatalyst for GLV production. We expressed the well-known 13S-specific LOX gene from Pleurotus sapidus and a compatible HPL gene from Medicago truncatula. In bioconversions, glycerol induced strains formed 12.9 mM hexanal using whole cells, and 8 mM hexanol was produced with whole cells induced by methanol. We applied various inducible and constitutive promoters in bidirectional systems to influence the final ratio of LOX and HPL proteins. By implementing these recombinant enzymes in Komagataella phaffii, challenges such as biocatalyst supply and lack of product specificity can finally be overcome.

2.
J Fungi (Basel) ; 8(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36294556

ABSTRACT

The industrially important non-conventional yeast Komagataella phaffii suffers from low rates of homologous recombination, making site specific genetic engineering tedious. Therefore, genome editing using CRISPR/Cas represents a simple and efficient alternative. To characterize on- and off-target mutations caused by CRISPR/Cas9 followed by non-homologous end joining repair, we chose a diverse set of CRISPR/Cas targets and conducted whole genome sequencing on 146 CRISPR/Cas9 engineered single colonies. We compared the outcomes of single target CRISPR transformations to double target experiments. Furthermore, we examined the extent of possible large deletions by targeting a large genomic region, which is likely to be non-essential. The analysis of on-target mutations showed an unexpectedly high number of large deletions and chromosomal rearrangements at the CRISPR target loci. We also observed an increase of on-target structural variants in double target experiments as compared to single target experiments. Targeting of two loci within a putatively non-essential region led to a truncation of chromosome 3 at the target locus in multiple cases, causing the deletion of 20 genes and several ribosomal DNA repeats. The identified de novo off-target mutations were rare and randomly distributed, with no apparent connection to unspecific CRISPR/Cas9 off-target binding sites.

3.
Methods Mol Biol ; 2513: 79-112, 2022.
Article in English | MEDLINE | ID: mdl-35781201

ABSTRACT

Within the last two decades, the methylotrophic yeast Pichia pastoris (Komagataella phaffii) has become an important alternative to E. coli or mammalian cell lines for the production of recombinant proteins. Easy handling, strong promoters, and high cell density cultivations as well as the capability of posttranslational modifications are some of the major benefits of this yeast. The high secretion capacity and low level of endogenously secreted proteins further promoted the rapid development of a versatile Pichia pastoris toolbox. This chapter reviews common and new "Pichia tools" and their specific features. Special focus is given to expression strains, such as different methanol utilization, protease-deficient or glycoengineered strains, combined with application highlights. Different promoters and signal sequences are also discussed.


Subject(s)
Escherichia coli , Pichia , Escherichia coli/metabolism , Pichia/genetics , Pichia/metabolism , Promoter Regions, Genetic , Recombinant Proteins/metabolism , Saccharomycetales
4.
ACS Catal ; 11(18): 11511-11525, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34540338

ABSTRACT

Unspecific peroxygenases (UPO) are glycosylated fungal enzymes that can selectively oxidize C-H bonds. UPOs employ hydrogen peroxide as oxygen donor and reductant. With such an easy-to-handle co-substrate and without the need of a reducing agent, UPOs are emerging as convenient oxidative biocatalysts. Here, an unspecific peroxygenase from Hypoxylon sp. EC38 (HspUPO) was identified in an activity-based screen of six putative peroxygenase enzymes that were heterologously expressed in Pichia pastoris. The enzyme was found to tolerate selected organic solvents such as acetonitrile and acetone. HspUPO is a versatile catalyst performing various reactions, such as the oxidation of prim- and sec-alcohols, epoxidations and hydroxylations. Semi-preparative biotransformations were demonstrated for the non-enantioselective oxidation of racemic 1-phenylethanol rac -1b (TON = 13000), giving the product with 88% isolated yield, and the oxidation of indole 6a to give indigo 6b (TON = 2800) with 98% isolated yield. HspUPO features a compact and rigid three-dimensional conformation that wraps around the heme and defines a funnel-shaped tunnel that leads to the heme iron from the protein surface. The tunnel extends along a distance of about 12 Å with a fairly constant diameter in its innermost segment. Its surface comprises both hydrophobic and hydrophilic groups for dealing with small-to-medium size substrates of variable polarities. The structural investigation of several protein-ligand complexes revealed that the active site of HspUPO is accessible to molecules of varying bulkiness and polarity with minimal or no conformational changes, explaining the relatively broad substrate scope of the enzyme. With its convenient expression system, robust operational properties, relatively small size, well-defined structural features, and diverse reaction scope, HspUPO is an exploitable candidate for peroxygenase-based biocatalysis.

5.
Microb Cell Fact ; 20(1): 90, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33902608

ABSTRACT

BACKGROUND: Currently, the numerous and versatile applications in pharmaceutical and chemical industry make the recombinant production of cytochrome P450 enzymes (CYPs) of great biotechnological interest. Accelerating the drug development process by simple, quick and scalable access of human drug metabolites is key for efficient and targeted drug development in response to new and sometimes unexpected medical challenges and needs. However, due its biochemical complexity, scalable human CYP (hCYP) production and their application in preparative biotransformations was still in its infancy. RESULTS: A scalable bioprocess for fine-tuned co-expression of hCYP2C9 and its essential complementary human cytochrome P450 reductase (hCPR) in the yeast Pichia pastoris (Komagataella phaffii) is presented. High-throughput screening (HTS) of a transformant library employing a set of diverse bidirectional expression systems with different regulation patterns and a fluorimetric assay was used in order to fine-tune hCYP2C9 and hCPR co-expression, and to identify best expressing clonal variants. The bioprocess development for scalable and reliable whole cell biocatalyst production in bioreactors was carried out based on rational optimization criteria. Among the different alternatives studied, a glycerol carbon-limiting strategy at high µ showed highest production rates, while methanol co-addition together with a decrease of µ provided the best results in terms of product to biomass yield and whole cell activity. By implementing the mentioned strategies, up to threefold increases in terms of production rates and/or yield could be achieved in comparison with initial tests. Finally, the performance of the whole cell catalysts was demonstrated successfully in biotransformation using ibuprofen as substrate, demonstrating the expected high selectivity of the human enzyme catalyst for 3'hydroxyibuprofen. CONCLUSIONS: For the first time a scalable bioprocess for the production of hCYP2C9 whole cell catalysts was successfully designed and implemented in bioreactor cultures, and as well, further tested in a preparative-scale biotransformation of interest. The catalyst engineering procedure demonstrated the efficiency of the employment of a set of differently regulated bidirectional promoters to identify transformants with most effective membrane-bound hCYP/hCPR co-expression ratios and implies to become a model case for the generation of other P. pastoris based catalysts relying on co-expressed enzymes such as other P450 catalysts or enzymes relying on co-expressed enzymes for co-factor regeneration.


Subject(s)
Cytochrome P-450 Enzyme System/biosynthesis , Metabolic Engineering/methods , Recombinant Proteins/biosynthesis , Saccharomycetales/metabolism , Bioreactors , Catalysis , Humans
6.
Biotechnol J ; 15(11): e2000089, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32749051

ABSTRACT

Pseudomonas aeruginosa lipoxygenase (PaLOX) catalyzes the peroxidation of unsaturated fatty acids. Not only linoleic acid, but also linolenic acid and oleic acid are oxidized. The natural host secretes PaLOX into the periplasmic space. Herein, the aim is to secrete PaLOX to the culture supernatant of Pichia pastoris. Since protein background in the culture supernatant is typically rather low, this strategy allows for almost pure production of PaLOX applicable for the valorization of renewable fatty acids, for example for the production of green leaf volatiles. Using the CAT1 promoter system and the well-established α-factor signal sequence for secretion, methanol- and glycerol-induced secretion are compared and the latter shows four times more LOX activity in the culture supernatant under methanol-free conditions. In addition, secreted PaLOX is purified and the specific activity with enzyme in culture supernatant is compared. Notably, the predominant specific activity is achieved for enzyme in culture supernatant - 11.6 U mg-1 - reaching five times higher specific activity than purified PaLOX.


Subject(s)
Glycerol , Pichia , Lipoxygenase/genetics , Methanol , Pichia/genetics , Pseudomonas aeruginosa/genetics , Recombinant Proteins/genetics , Saccharomycetales
7.
J Agric Food Chem ; 67(49): 13367-13392, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31591878

ABSTRACT

Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.


Subject(s)
Aldehyde-Lyases/chemistry , Cytochrome P-450 Enzyme System/chemistry , Flavoring Agents/chemistry , Lipoxygenases/chemistry , Plant Leaves/enzymology , Plant Proteins/chemistry , Volatile Organic Compounds/chemistry , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Biocatalysis , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Flavoring Agents/metabolism , Lipoxygenases/genetics , Lipoxygenases/metabolism , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Volatile Organic Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...