Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
EJNMMI Res ; 14(1): 42, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668903

ABSTRACT

BACKGROUND: In patients with prostate cancer (PCa), imaging with gastrin-releasing peptide receptor (GRPR) ligands is an alternative to PSMA-targeted tracers, particularly if PSMA expression is low or absent. [99mTc]Tc-N4-BTG is a newly developed GRPR-directed probe for conventional scintigraphy and single photon emission computed tomography (SPECT) imaging. The current study aims to investigate the safety, biodistribution and dosimetry of [99mTc]Tc-N4-BTG in patients with biochemical recurrence (BCR) of PCa. RESULTS: No adverse pharmacologic effects were observed. Injection of [99mTc]Tc-N4-BTG resulted in an effective dose of 0.0027 ± 0.0002 mSv/MBq. The urinary bladder was the critical organ with the highest mean absorbed dose of 0.028 ± 0.001 mGy/MBq, followed by the pancreas with 0.0043 ± 0.0015 mGy/MBq, osteogenic cells with 0.0039 ± 0.0005 mGy/MBq, the kidneys with 0.0034 ± 0.0003 mGy/MBq, and the liver with 0.0019 ± 0.0004 mGy/MBq, respectively. No focal tracer uptake suggestive of PCa recurrence could be revealed for any of the patients. CONCLUSION: [99mTc]Tc-N4-BTG appears to be a safe diagnostic agent. Compared to GRPR-targeted PET tracers, this 99mTc-labelled SPECT agent could contribute to a broader application and better availability of this novel approach. Further research to assess its clinical value is warranted.

2.
J Nucl Med ; 65(3): 432-437, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38164586

ABSTRACT

We recently published the first dosimetry data, to our knowledge, for the radioligand therapy agent 177Lu-rhPSMA-10.1, providing an intrapatient comparison with 177Lu-PSMA-I&T in patients with metastatic prostate cancer. Here, we report efficacy and safety findings from these patients. Methods: Four consecutive patients with prostate-specific membrane antigen (PSMA)-positive metastatic prostate cancer received up to 6 cycles of 177Lu-rhPSMA-10.1 (7.4-7.7 GBq per cycle). Efficacy (prostate-specific antigen response according to Prostate Cancer Working Group 3 criteria and the Response Evaluation Criteria in PSMA PET/CT), progression-free survival, and overall survival were evaluated. Adverse events were recorded from the first dose until 16-24 mo after treatment. Results: The patients received a total activity of 29.6-59.4 GBq (4-6 cycles). Prostate-specific antigen was reduced by 100%, 99%, 88%, and 35%. Progression-free survival was not reached for 2 patients at 24 and 18 mo of follow-up and was 15 and 12 mo for the other 2 patients. One patient had a sustained complete response with 2 y of follow up. All patients were alive at the last time point of data collection. No serious adverse events were reported. Conclusion: 177Lu-rhPSMA-10.1 demonstrated encouraging preliminary efficacy and was well tolerated. Formal clinical trials are now under way to evaluate its potential prospectively (NCT05413850).


Subject(s)
Neoplasms, Second Primary , Prostatic Neoplasms , Male , Humans , Prostate-Specific Antigen , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms/radiotherapy , Data Collection
3.
Mov Disord ; 38(10): 1901-1913, 2023 10.
Article in English | MEDLINE | ID: mdl-37655363

ABSTRACT

BACKGROUND: To date, studies on positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) in progressive supranuclear palsy (PSP) usually included PSP cohorts overrepresenting patients with Richardson's syndrome (PSP-RS). OBJECTIVES: To evaluate FDG-PET in a patient sample representing the broad phenotypic PSP spectrum typically encountered in routine clinical practice. METHODS: This retrospective, multicenter study included 41 PSP patients, 21 (51%) with RS and 20 (49%) with non-RS variants of PSP (vPSP), and 46 age-matched healthy controls. Two state-of-the art methods for the interpretation of FDG-PET were compared: visual analysis supported by voxel-based statistical testing (five readers) and automatic covariance pattern analysis using a predefined PSP-related pattern. RESULTS: Sensitivity and specificity of the majority visual read for the detection of PSP in the whole cohort were 74% and 72%, respectively. The percentage of false-negative cases was 10% in the PSP-RS subsample and 43% in the vPSP subsample. Automatic covariance pattern analysis provided sensitivity and specificity of 93% and 83% in the whole cohort. The percentage of false-negative cases was 0% in the PSP-RS subsample and 15% in the vPSP subsample. CONCLUSIONS: Visual interpretation of FDG-PET supported by voxel-based testing provides good accuracy for the detection of PSP-RS, but only fair sensitivity for vPSP. Automatic covariance pattern analysis outperforms visual interpretation in the detection of PSP-RS, provides clinically useful sensitivity for vPSP, and reduces the rate of false-positive findings. Thus, pattern expression analysis is clinically useful to complement visual reading and voxel-based testing of FDG-PET in suspected PSP. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Movement Disorders , Supranuclear Palsy, Progressive , Humans , Fluorodeoxyglucose F18 , Positron-Emission Tomography/methods , Retrospective Studies , Supranuclear Palsy, Progressive/diagnosis
4.
J Nucl Med ; 64(12): 1918-1924, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37770108

ABSTRACT

As the use of radioligand therapy moves earlier in the prostate cancer timeline, minimizing the absorbed dose to normal organs while maintaining high tumor radiation doses becomes more clinically important because of the longer life expectancy of patients. We performed an intrapatient comparison of pretherapeutic dosimetry with the novel radiohybrid prostate-specific membrane antigen-targeting radiopharmaceutical 177Lu-rhPSMA-10.1, along with 177Lu-PSMA-I&T, in patients with metastatic castration-resistant prostate cancer. Methods: Four consecutive patients with advanced histologically proven metastatic castration-resistant prostate cancer who were scheduled for radioligand therapy were evaluated. Before undergoing therapy, each patient received 1.06 ± 0.05 GBq of 177Lu-rhPSMA-10.1 and 1.09 ± 0.02 GBq of 177Lu-PSMA-I&T at least 7 d apart. For dosimetric assessment, whole-body planar scintigraphy was performed after 5 min, 4 h, 1 d, 2 d, and 7 d. In addition, SPECT/CT images were acquired over the thorax and the abdomen, 4 h, 1 d, 2 d, and 7 d after injection. Dosimetry of the whole body and salivary glands was based on the evaluation of the counts in whole-body planar imaging. Dosimetry of the kidneys, liver, spleen, bone marrow, and tumor lesions (≤4 per patient) was based on the activity in volumes drawn on SPECT/CT images. Doses were calculated using OLINDA/EXM version 1.0. The therapeutic index (TI), or ratio between mean dose of the metastases and mean dose of the kidneys, was calculated for each patient. Results: We found the dose to the kidneys to be higher with 177Lu-rhPSMA-10.1 than with 177Lu-PSMA-I&T (0.68 ± 0.30 vs. 0.46 ± 0.10 mGy/MBq); however, 177Lu-rhPSMA-10.1 delivered an average of a 3.3 times (range, 1.2-8.3 times) higher absorbed radiation dose to individual tumor lesions. Consequently, intraindividual comparison revealed a 1.1-3.1 times higher TI for 177Lu-rhPSMA-10.1 than for 177Lu-PSMA-I&T in all evaluated patients. The effective whole-body dose was 0.038 ± 0.008 mSv/MBq for 177Lu-rhPSMA-10.1 and 0.022 ± 0.005 mSv/MBq for 177Lu-PSMA-I&T. Conclusion: Using 177Lu-rhPSMA-10.1 can significantly increase the tumor-absorbed dose and improve the TI compared with 177Lu-PSMA-I&T. An improved TI gives the flexibility to maximize tumor-absorbed doses up to a predefined renal dose limit or, in earlier disease, to reduce the radiation exposure to the kidney while still achieving an effective tumor dose. The function of at-risk organs such as the kidneys is being assessed in a prospective clinical trial.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prospective Studies , Dipeptides/therapeutic use , Prostate-Specific Antigen , Radiometry , Radiopharmaceuticals/therapeutic use , Heterocyclic Compounds, 1-Ring/therapeutic use , Lutetium/therapeutic use
5.
Eur J Nucl Med Mol Imaging ; 50(13): 3937-3948, 2023 11.
Article in English | MEDLINE | ID: mdl-37597009

ABSTRACT

PURPOSE: The clinical success non-invasive imaging of CXCR4 expression using [68 Ga]Ga-PentixaFor-PET warrants an expansion of the targeting concept towards conventional scintigraphy/SPECT with their lower cost and general availability. To this aim, we developed and comparatively evaluated a series of 99mTc-labeled cyclic pentapeptides based on the PentixaFor scaffold. METHODS: Six mas3-conjugated CPCR4 analogs with different 4-aminobenzoic acid (Abz)-D-Ala-D-Arg-aa3 linkers (L1-L6) as well as the corresponding HYNIC- and N4-analogs of L6-CPCR4 were synthesized via standard SPPS. Competitive binding studies (IC50 and IC50inv) were carried out using Jurkat T cell lymphoma cells and [125I]FC-131 as radioligand. Internalization kinetics were investigated using hCXCR4-overexpressing Chem-1 cells. Biodistribution studies and small animal SPECT/CT imaging (1 h p.i.) were carried out using Jurkat xenograft bearing CB17/SCID mice. Based on the preclinical results, [99mTc]Tc-N4-L6-CPCR4 ([99mTc]Tc-PentixaTec) was selected for an early translation to the human setting. Five patients with hematologic malignancies underwent [99mTc]Tc-N4-L6-CPCR4 SPECT/planar imaging with individual dosimetry. RESULTS: Of the six mas3-conjugated peptides, mas3-L6-CPCR4 (mas3-dap-r-a-Abz-CPCR4) showed the highest CXCR4 affinity (IC50 = 5.0 ± 1.3 nM). Conjugation with N4 (N4-L6-CPCR4) further improved hCXCR4 affinity to 0.6 ± 0.1 nM. [99mTc]Tc-N4-L6-CPCR4 also showed the most efficient internalization (97% of total cellular activity at 2 h) and the highest tumor accumulation (8.6 ± 1.3% iD/g, 1 h p.i.) of the compounds investigated. Therefore, [99mTc]Tc-N4-L6-CPCR4 (termed [99mTc]Tc-PentixaTec) was selected for first-in-human application. [99mTc]Tc-PentixaTec was well tolerated, exhibits a favorable biodistribution and dosimetry profile (2.1-3.4 mSv per 500 MBq) and excellent tumor/background ratios in SPECT and planar imaging. CONCLUSION: The successive optimization of the amino acid composition of the linker structure and the N-terminal 99mTc-labeling strategies (mas3 vs HYNIC vs N4) has provided [99mTc]Tc-PentixaTec as a novel, highly promising CXCR4-targeted SPECT agent for clinical application. With its excellent CXCR4 affinity, efficient internalization, high uptake in CXCR4-expressing tissues, suitable clearance/biodistribution characteristics, and favorable human dosimetry, it holds great potential for further clinical use.


Subject(s)
Neoplasms , Tomography, Emission-Computed, Single-Photon , Mice , Animals , Humans , Tissue Distribution , Mice, SCID , Tomography, Emission-Computed, Single-Photon/methods , Radionuclide Imaging
6.
EJNMMI Phys ; 9(1): 53, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35943622

ABSTRACT

BACKGROUND: Machine learning studies require a large number of images often obtained on different PET scanners. When merging these images, the use of harmonized images following EARL-standards is essential. However, when including retrospective images, EARL accreditation might not have been in place. The aim of this study was to develop a convolutional neural network (CNN) that can identify retrospectively if an image is EARL compliant and if it is meeting older or newer EARL-standards. MATERIALS AND METHODS: 96 PET images acquired on three PET/CT systems were included in the study. All images were reconstructed with the locally clinically preferred, EARL1, and EARL2 compliant reconstruction protocols. After image pre-processing, one CNN was trained to separate clinical and EARL compliant reconstructions. A second CNN was optimized to identify EARL1 and EARL2 compliant images. The accuracy of both CNNs was assessed using fivefold cross-validation. The CNNs were validated on 24 images acquired on a PET scanner not included in the training data. To assess the impact of image noise on the CNN decision, the 24 images were reconstructed with different scan durations. RESULTS: In the cross-validation, the first CNN classified all images correctly. When identifying EARL1 and EARL2 compliant images, the second CNN identified 100% EARL1 compliant and 85% EARL2 compliant images correctly. The accuracy in the independent dataset was comparable to the cross-validation accuracy. The scan duration had almost no impact on the results. CONCLUSION: The two CNNs trained in this study can be used to retrospectively include images in a multi-center setting by, e.g., adding additional smoothing. This method is especially important for machine learning studies where the harmonization of images from different PET systems is essential.

7.
Nuklearmedizin ; 61(4): 294-300, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35388444

ABSTRACT

AIM: Recently, dose reference levels (DRLs) have been defined in Germany for auxiliary low-dose CT scans in hybrid SPECT/CT and PET/CT examinations, based on data from 2016/17. Here, another survey from 2020 was evaluated and compared with the new DRLs as well as with similar surveys from foreign countries. METHODS: The survey, which had already been conducted in the Nordic countries, queried for various examinations including the following values: patient weight and height, volume CT dose index (CTDIvol), dose length product (DLP). For each examination, statistical parameters such as the third quartile (Q3) were determined from all submitted CTDIvol and DLP values. Additionally, for examinations comprising datasets from at least 10 systems, the third quartile (Q3-Med) of the respective median values of each system was calculated. Q3 and Q3-Med were compared with the newly published DRLs from Germany and values from similar studies from other countries. RESULTS: Data from 15 SPECT/CT and 13 PET/CT systems from 15 nuclear medicine departments were collected. For the following examinations datasets from more than 10 systems were submitted: SPECT lung VQ, SPECT bone, SPECT&PET cardiac, PET brain, PET oncology. Especially for examinations of the thorax and heart, the new DRLs are very strict compared to this study. The CTDIvol values for examinations of the head were lower in this study than the DRLs prescribe now. CONCLUSIONS: For certain examination types, there is a need for dose optimization at some clinics and devices in order to take into account the new DRLs in Germany in the future.


Subject(s)
Positron Emission Tomography Computed Tomography , Tomography, X-Ray Computed , Germany , Humans , Radiation Dosage , Reference Values , Single Photon Emission Computed Tomography Computed Tomography , Tomography, X-Ray Computed/methods
8.
EJNMMI Phys ; 7(1): 41, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32556844

ABSTRACT

BACKGROUND: Individualized dosimetry is recommended for [177Lu]Lu-PSMA radioligand therapy (RLT) which is resource-intensive and protocols are often not optimized. Therefore, a simulation study was performed focusing on the determination of efficient optimal sampling schedules (OSS) for renal and tumour dosimetry by investigating different numbers of time points (TPs). METHODS: Sampling schedules with 1-4 TPs were investigated. Time-activity curves of the kidneys and two tumour lesions were generated based on a physiologically based pharmacokinetic (PBPK) model and biokinetic data of 13 patients who have undergone [177Lu]Lu-PSMA I&T therapy. Systematic and stochastic noise of different ratios was considered when modelling time-activity data sets. Time-integrated activity coefficients (TIACs) were estimated by simulating the hybrid planar/SPECT method for schedules comprising at least two TPs. TIACs based on one single SPECT/CT measurement were estimated using an approximation for reducing the number of fitted parameters. For each sampling schedule, the root-mean-squared error (RMSE) of the deviations of the simulated TIACs from the ground truths for 1000 replications was used as a measure for accuracy and precision. RESULTS: All determined OSS included a late measurement at 192 h p.i., which was necessary for accurate and precise tumour TIACs. OSS with three TPs were identified to be 3-4, 96-100 and 192 h with an additional SPECT/CT measurement at the penultimate TP. Kidney and tumour RMSE of 6.4 to 7.7% and 6.3 to 7.8% were obtained, respectively. Shortening the total time for dosimetry to e.g. 96 h resulted in kidney and tumour RMSE of 6.8 to 8.3% and 9.1 to 11%, respectively. OSS with four TPs showed similar results as with three TPs. Planar images at 4 and 68 h and a SPECT/CT shortly after the 68 h measurement led to kidney and tumour RMSE of 8.4 to 12% and 12 to 16%, respectively. One single SPECT/CT measurement at 52 h yielded good approximations for the kidney TIACs (RMSE of 7.0%), but led to biased tumour TIACs. CONCLUSION: OSS allow improvements in accuracy and precision of renal and tumour dosimetry for [177Lu]Lu-PSMA therapy with potentially less effort. A late TP is important regarding accurate tumour TIACs.

9.
Med Phys ; 46(12): 5861-5866, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31587333

ABSTRACT

PURPOSE: Accurate and precise renal dosimetry during 177 Lu-labeled prostate-specific membrane antigen (PSMA) radioligand therapy is crucial for therapy decisions. Sampling schedules for estimating the necessary time-integrated activity coefficients (TIACs) are not optimized and standardized for clinical practice. Therefore, a simulation study to determine optimal sampling schedules (OSSs) was performed on 13 virtual 177 Lu-PSMA I&T therapy patients. METHOD: A total of 880 clinically feasible sampling schedules for planar imaging (three time points) were investigated. To simulate the hybrid planar/SPECT method, an additional quantitative SPECT/CT measurement following one planar image was considered. For each sampling schedule and patient, the activity values were generated separately. Measurement noise was modeled by drawing random numbers of log-normal distributions. The used fractional standard deviations (FSD) differed depending on the imaging modality. For activity values assigned to planar imaging, systematic noise between 25% and 75% of the total noise was simulated. After fitting with a mono-exponential function, the root-mean-squared errors of the deviations of the simulated TIACs from the ground truth for 1000 replications were used to determine the OSS. The uncertainties of the TIACs and renal dose coefficients were estimated. RESULTS: For the hybrid planar/SPECT method, OSSs were determined to be (3-4, 72-76, 124-144)  h post injection (p.i.) with the quantitative SPECT/CT scan shortly after the second measurement. The accuracy and precision of the determined TIACs were in the range of (-3.0 ±  6.2)% and (-1.0  ±â€¯ 6.5)%. This precision was improved by a factor 2-3 compared to dosimetry based on planar images only. Similar results were obtained for the renal dose coefficients. The virtual patients' renal dose coefficients were (0.68  ± 0.24)  Gy/GBq indicating that a population-based method yields an uncertainty of 35%. CONCLUSIONS: Dosimetry based on the hybrid planar/SPECT method with OSS outperforms dosimetry based on planar images. The high variability in dose coefficients between the virtual patients demonstrates the need for individualized dosimetry.


Subject(s)
Dipeptides/therapeutic use , Heterocyclic Compounds, 1-Ring/therapeutic use , Kidney/diagnostic imaging , Kidney/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Tomography, Emission-Computed, Single-Photon , Aged , Dipeptides/adverse effects , Feasibility Studies , Heterocyclic Compounds, 1-Ring/adverse effects , Humans , Lutetium , Male , Organs at Risk/radiation effects , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/radiotherapy
10.
Nucl Med Biol ; 72-73: 20-25, 2019.
Article in English | MEDLINE | ID: mdl-31260881

ABSTRACT

INTRODUCTION: In prostate-specific membrane antigen (PSMA)-targeting radioligand therapy, small molecules are regularly internalised by the tumour cells. To determine the effectiveness of these ligands, the internalised fraction over time is derived from cell studies. Parameters, such as the ligand concentration and the number of cells, are experiment-specific and therefore a comparison between ligands is difficult. A more objective approach that allows better comparison is desirable. Therefore, the aim of this work was to develop a compartmental model that fully describes all relevant pharmacokinetic interactions of PSMA-specific ligands with prostate cancer cells. METHODS: Internalisation studies were performed using the lymph node carcinoma of the prostate cell line LNCaP C4-2 and the prostatic carcinoma cell line PC-3. A new protocol was established for the determination of the PSMA-binding specificity by surface plasmon resonance (SPR). The experimental data in combination with parameters from literature were used for the modelling approach. RESULTS: A compartmental model which includes the relevant physiological mechanisms was developed. The basic model structure and some parameters originate from the literature. The PSMA-specific association and dissociation rates of Ga-PSMA-11 were measured using surface plasmon resonance technology. The ligand-induced internalisation and PSMA synthesis rates were estimated by fitting the developed model to experimental data obtained using LNCaP C4-2 cells. For all [68Ga]Ga-PSMA-11 concentrations and including four various incubation times, the ligand-induced internalisation was determined to be (3.6 ±â€¯0.1) % min-1. CONCLUSIONS: The presented approach is a prerequisite for better estimation and thus comparison of important ligand-cell interaction parameters, by combining SPR measurements, cell experiments and mathematical modelling. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT: A compartmental model was developed for evaluation and comparison of PSMA-binding small molecules. A SPR protocol was established for the determination of PSMA-binding specificity.


Subject(s)
Antigens, Surface/metabolism , Edetic Acid/analogs & derivatives , Glutamate Carboxypeptidase II/metabolism , Oligopeptides/metabolism , Prostatic Neoplasms/metabolism , Antigens, Surface/chemistry , Edetic Acid/chemistry , Edetic Acid/metabolism , Gallium Isotopes , Gallium Radioisotopes , Glutamate Carboxypeptidase II/chemistry , Humans , Ligands , Male , Models, Theoretical , Oligopeptides/chemistry , Surface Plasmon Resonance , Tumor Cells, Cultured
11.
Phys Med Biol ; 64(10): 105023, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30965311

ABSTRACT

In proton therapy, patients benefit from the precise deposition of the dose in the tumor volume due to the interaction of charged particles with matter. Currently, the determination of the beam range in the patient's body during the treatment is not a clinical standard. This lack causes broad safety margins around the tumor, which limits the potential of proton therapy. To overcome this obstacle, different methods are under investigation aiming at the verification of the proton range in real time during the irradiation. One approach is the prompt gamma-ray timing (PGT) method, where the range of the primary protons is derived from time-resolved profiles (PGT spectra) of promptly emitted gamma rays, which are produced along the particle track in tissue. After verifying this novel technique in an experimental environment but far away from treatment conditions, the translation of PGT into clinical practice is intended. Therefore, new hardware was extensively tested and characterized using short irradiation times of 70 ms and clinical beam currents of 2 nA. Experiments were carried out in the treatment room of the University Proton Therapy Dresden. A pencil beam scanning plan was delivered to a target without and with cylindrical air cavities of down to 5 mm thickness. The range shifts of the proton beam induced due to the material variation could be identified from the corresponding PGT spectra, comprising events collected during the delivery of a whole energy layer. Additionally, an assignment of the PGT data to the individual pencil beam spots allowed a spot-wise analysis of the variation of the PGT distribution mean and width, corresponding to range shifts produced by the different air cavities. Furthermore, the paper presents a comprehensive software framework which standardizes future PGT analysis methods and correction algorithms for technical limitations that have been encountered in the presented experiments.


Subject(s)
Algorithms , Gamma Rays , Phantoms, Imaging , Proton Therapy/instrumentation , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Radionuclide Imaging
12.
Z Med Phys ; 29(4): 314-325, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30611606

ABSTRACT

AIM: For dosimetry in radioligand therapy, the time-integrated activity coefficients (TIACs) for organs at risk and for tumour lesions have to be determined. The used sampling scheme affects the TIACs and therefore the calculated absorbed doses. The aim of this work was to develop a general and flexible method, which analyses numerous clinically applicable sampling schedules using true time-activity curves (TACs) of virtual patients. METHOD: Nine virtual patients with true TACs of the tumours were created using a physiologically-based pharmacokinetic (PBPK) model and individual biokinetic data of five patients with neuroendocrine tumours and four with meningioma. 111In-DOTATATE was used for pre-therapeutic dosimetry. In total, 15,120 sampling schemes, each consisting of 4 time points, were investigated. Gaussian noise of different levels was added to the corresponding true time-activity points. A bi-exponential function was used to fit the simulated time-activity data. For each investigated sampling schedule, 1000 replications were performed. Patient-specific and population-specific optimal sampling schedules were determined using the relative root-mean-square error (rRMSE). Furthermore, the fractions of TIACs a˜ deviating >5% (fΔa˜>5%) and >10% (fΔa˜>10%) from the true TIAC a˜true were used for additional evaluations e.g. to investigate the effect of varying single time points. RESULTS: Almost all patient-specific and all population-specific optimal sampling schedules have t4≥96h for all noise levels. Changing the latest time point from the population-specific optimal time to e.g. 48h leads to a median increase of fΔa˜>10% from 0.1% to 88% for the lowest investigated noise level. Using the determined population-specific optimal schedules, results in more accurate and precise results than established schedules from the literature. CONCLUSION: A method of determining the optimal sampling schedule for dosimetry, which considers clinical working hours and measurement uncertainties, has been developed and applied. The simulation study shows that optimised sampling schedules result in high accuracy and precision of the determined TIACs.


Subject(s)
Computer Simulation , Radiotherapy Planning, Computer-Assisted , Radiotherapy/methods , Humans , Meningioma/radiotherapy , Neuroendocrine Tumors/radiotherapy , Time Factors
13.
J Nucl Med ; 60(1): 65-70, 2019 01.
Article in English | MEDLINE | ID: mdl-29748236

ABSTRACT

The aim of this work was to develop a theranostic method that allows prediction of prostate-specific membrane antigen (PSMA)-positive tumor volume after radioligand therapy (RLT) based on a pretherapeutic PET/CT measurement and physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling at the example of RLT using 177Lu-labeled PSMA for imaging and therapy (PSMA I&T). Methods: A recently developed PBPK model for 177Lu-PSMA I&T RLT was extended to account for tumor (exponential) growth and reduction due to irradiation (linear quadratic model). Data from 13 patients with metastatic castration-resistant prostate cancer were retrospectively analyzed. Pharmacokinetic/pharmacodynamic parameters were simultaneously fitted in a Bayesian framework to PET/CT activity concentrations, planar scintigraphy data, and tumor volumes before and after (6 wk) therapy. The method was validated using the leave-one-out Jackknife method. The tumor volume after therapy was predicted on the basis of pretherapy PET/CT imaging and PBPK/PD modeling. Results: The relative deviation of the predicted and measured tumor volume for PSMA-positive tumor cells (6 wk after therapy) was 1% ± 40%, excluding 1 patient (prostate-specific antigen-negative) from the population. The radiosensitivity for the prostate-specific antigen-positive patients was determined to be 0.0172 ± 0.0084 Gy-1Conclusion: To our knowledge, the proposed method is the first attempt to solely use PET/CT and modeling methods to predict the PSMA-positive tumor volume after RLT. Internal validation shows that this is feasible with an acceptable accuracy. Improvement of the method and external validation of the model is ongoing.


Subject(s)
Models, Biological , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Antigens, Surface/metabolism , Glutamate Carboxypeptidase II/metabolism , Humans , Image Processing, Computer-Assisted , Ligands , Lutetium/therapeutic use , Male , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Radioisotopes/therapeutic use , Tissue Distribution , Treatment Outcome , Tumor Burden/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...