Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Plant Biol ; 512024 01.
Article in English | MEDLINE | ID: mdl-38163648

ABSTRACT

Environments originating from banded iron formations, such as the canga , are important reference ecosystems for the recovery of degraded areas by mining. The objective of this work was to evaluate if the relationship between morphofunctional and photosynthetic attributes of native canga species from different functional group results in distinct responses when grown in iron mining tailings substrate. The experiment was carried out with species belonging to different functional groups: a widespread semi-deciduous tree-shrub, Myrcia splendens ; an endemic deciduous shrub, Jacaranda caroba ; and a nitrogen-fixing herbaceous species, Periandra mediterranea . The species were grown in two conditions, reference soil and iron ore tailing. Despite belonging to different functional groups when grown in tailings, the morphofunctional attributes presented similar responses between species. M. splendens was the species most affected by the conditions imposed by the iron ore mining tailings, with decreased light-use efficiency and electron transport. P. mediterranea had satisfactory growth and maintenance of photosynthetic attributes. J. caroba growing in the tailings increased the effective quantum yield of PSII. The photochemical and growth assessments were able to better explain the adaptive strategies developed by the species, guaranteeing a greater chance of success during the rehabilitation of mining substrates.


Subject(s)
Ecosystem , Iron , Plants/metabolism , Trees/metabolism , Mining
2.
J Environ Manage ; 326(Pt A): 116655, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36368206

ABSTRACT

The iron ore mining activity results in considerable waste production and impacts on surrounding ecosystems. Natural recovery of impacted areas is absent or occurs slowly, especially when associated with prolonged dry seasons in tropical regions. The objective of this work was to unveil the mechanisms of Paspalum densum (Poir.) grass to overcome the periods of seasonal drought and its metal accumulation in areas impacted by iron mining, a tailings storage facilities and surrounding ferruginous grassland in Brazil. Lower mortality was observed among individuals in the tailings storage facilities, with a 74.3% survival rate. In contrast, after the beginning of the dry season, all individuals died in the ferruginous grassland. The plants in the tailings deposits showed better nutrition, with a higher concentration of P, Cu, Fe, Zn, Mn and greater capacity to accumulate Pb and Cd over time. Pb was the element with highest bioconcetration factor (BCF) and bioaccumulation coefficient (BAC), while Mn was the one with the highest translocation factor (TF). The dry season resulted in reduced chlorophyll a, b and total and effective quantum yield of photosystem II (PSII) of P. densum individuals. However, the plants in the tailings storage facilities showed adjustments to overcome the effects of drought, with an increase in the concentration of proline in leaves and reduction of oxidative damage (MDA and H2O2) at the end of the dry season. The grass P. densum showed rapid acclimatization in the tailings storage facilities and resistance to drought through antioxidant and photosynthetic adjustments and was still able to bioaccumulate and translocate in plant tissues some metals present in the iron ore impacted sites.


Subject(s)
Metals, Heavy , Soil Pollutants , Trace Elements , Humans , Poaceae , Soil Pollutants/analysis , Chlorophyll A , Ecosystem , Hydrogen Peroxide , Lead , Iron/analysis , Plants
3.
Environ Sci Pollut Res Int ; 28(12): 14797-14811, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33219507

ABSTRACT

The revegetation of areas degraded by iron ore mining is a difficult challenge mainly due to water availability and impoverished metal-rich substrates. We sought to understand the photosynthetic responses to drought of native tropical grasses Paspalum densum (Poir.) and Setaria parviflora (Poir.) grown in iron ore tailing. The grass P. densum presented better photosynthetic adjustments when grown in the iron ore tailing and S. paviflora in response to water stress. Both species accumulated iron above the phytotoxic threshold when grown in an iron ore tailing. The net photosynthesis, stomatal conductance, transpiration, and water use efficiency decreased followed by a reduction in leaf relative water content in response to water stress for both species. The photochemical efficiency of photosystem II only decreased at the point of maximum drought. At this point, the water-stressed grass grown in the iron ore tailing presented higher H2O2 concentrations, particularly S. parviflora. After rehydration, full recovery of photosynthetic variables was achieved with decreased malondialdehyde concentrations, increased catalase activity, and, consequently, decreased H2O2 concentrations in leaves for both species. The fast recovery of the native grasses P. densum and S. parviflora to drought in the iron ore tailing substrate is indicative of their resistance and potential use in the revegetation of impoverished mined areas with high iron content and seasonal water deficit.


Subject(s)
Droughts , Hydrogen Peroxide , Iron , Photosynthesis , Plant Leaves , Water
4.
J Environ Sci (China) ; 78: 257-266, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30665644

ABSTRACT

The revegetation of mined areas poses a great challenge to the iron ore mining industry. The initial recovery process in degraded areas might rely on the use of Fe-resistant grasses. Tropical grasses, such as Paspalum densum and Echinochloa crus-galli, show different resistance strategies to iron toxicity; however, these mechanisms are poorly understood. The Fe-resistance mechanisms and direct iron toxicity as a function of root apex removal were investigated. To achieve this purpose, both grass species were grown for up to 480 hr in a nutrient solution containing 0.019 or 7 mmol/L Fe-EDTA after the root apices had been removed or maintained. Cultivation in the presence of excess iron-induced leaf bronzing and the formation of iron plaque on the root surfaces of both grass species, but was more significant on those plants whose root apex had been removed. Iron accumulation was higher in the roots, but reached phytotoxic levels in the aerial parts as well. It did not hinder the biosynthesis of chloroplastidic pigments. No significant changes in gas exchange and chlorophyll a fluorescence occurred in either grass when their roots were kept intact; the contrary was true for plants with excised root apices. In both studied grasses, the root apoplastic barriers had an important function in the restriction of iron translocation from the root to the aerial plant parts, especially in E. crus-galli. Root apex removal negatively influenced the iron toxicity resistance mechanisms (tolerance in P. densum and avoidance in E. crus-galli).


Subject(s)
Adaptation, Physiological/physiology , Biodegradation, Environmental , Iron/toxicity , Poaceae/metabolism , Soil Pollutants/toxicity , Chlorophyll A/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...