Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 135(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35801807

ABSTRACT

The plasma membrane not only protects the cell from the extracellular environment, acting as a selective barrier, but also regulates cellular events that originate at the cell surface, playing a key role in various biological processes that are essential for the preservation of cell homeostasis. Therefore, elucidation of the mechanisms involved in the maintenance of plasma membrane integrity and functionality is of utmost importance. Cells have developed mechanisms to ensure the quality of proteins that inhabit the cell surface, as well as strategies to cope with injuries inflicted to the plasma membrane. Defects in these mechanisms can lead to the development or onset of several diseases. Despite the importance of these processes, a comprehensive and holistic perspective of plasma membrane quality control is still lacking. To tackle this gap, in this Review, we provide a thorough overview of the mechanisms underlying the identification and targeting of membrane proteins that are to be removed from the cell surface, as well as the membrane repair mechanisms triggered in both physiological and pathological conditions. A better understanding of the mechanisms underlying protein quality control at the plasma membrane can reveal promising and unanticipated targets for the development of innovative therapeutic approaches.


Subject(s)
Proteins , Cell Membrane/metabolism , Homeostasis , Proteins/metabolism
2.
Mol Immunol ; 149: 27-38, 2022 09.
Article in English | MEDLINE | ID: mdl-35709630

ABSTRACT

Parasitic protozoa are eukaryotic unicellular organisms that depend on a variety of living organisms and can develop intra- and extracellularly inside their hosts. In humans, these parasites cause diseases with a significant impact on public health, such as malaria, toxoplasmosis, Chagas disease, leishmaniasis and amebiasis. The ability of a parasite in establishing a successful infection depends on a series of intricate evolutionarily selected adaptations, which include the development of molecular and cellular strategies to evade the host immune system effector mechanisms. The complement system is one of the main effector mechanisms and the first humoral shield of hosts innate immunity against pathogens. For unicellular pathogens, such as protozoa, bacteria and fungi, the activation of the complement system may culminate in the elimination of the invader mainly via 1- the formation of a pore that depolarizes the plasma membrane of the parasite, causing cell lysis; 2- opsonization and killing by phagocytes; 3- increasing vascular permeability while also recruiting neutrophils to the site of activation. Numerous strategies to avoid complement activation have been reported for parasitic protozoa, such as 1- sequestration of complement system regulatory proteins produced by the host, 2- expression of complement system regulatory proteins, 3- proteolytic cleavage of different complement effector molecules, 4- formation of a physical glycolipid barrier that prevents deposition of complement molecules on the plasma membrane, and 5- removal, by endocytosis, of complement molecules bound to plasma membrane. In this review, we revisit the different strategies of blocking various stages of complement activation described for the main species of parasitic protozoa, present the most recent discoveries in the field and discuss new perspectives on yet neglected strategies and possible new evasion mechanisms.


Subject(s)
Leishmaniasis , Parasites , Animals , Complement Activation , Complement System Proteins , Homicide , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...