Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 13321, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858497

ABSTRACT

Myocardin-related transcription factors (MRTFs: myocardin/MYOCD, MRTF-A/MRTFA, and MRTF-B/MRTFB) suppress production of pro-inflammatory cytokines and chemokines in human smooth muscle cells (SMCs) through sequestration of RelA in the NF-κB complex, but additional mechanisms are likely involved. The cGAS-STING pathway is activated by double-stranded DNA in the cytosolic compartment and acts through TANK-binding kinase 1 (TBK1) to spark inflammation. The present study tested if MRTFs suppress inflammation also by targeting cGAS-STING signaling. Interrogation of a transcriptomic dataset where myocardin was overexpressed using a panel of 56 cGAS-STING cytokines showed the panel to be repressed. Moreover, MYOCD, MRTFA, and SRF associated negatively with the panel in human arteries. RT-qPCR in human bronchial SMCs showed that all MRTFs reduced pro-inflammatory cytokines on the panel. MRTFs diminished phosphorylation of TBK1, while STING phosphorylation was marginally affected. The TBK1 inhibitor amlexanox, but not the STING inhibitor H-151, reduced the anti-inflammatory effect of MRTF-A. Co-immunoprecipitation and proximity ligation assays supported binding between MRTF-A and TBK1 in SMCs. MRTFs thus appear to suppress cellular inflammation in part by acting on the kinase TBK1. This may defend SMCs against pro-inflammatory insults in disease.


Subject(s)
Inflammation , Myocytes, Smooth Muscle , Nuclear Proteins , Protein Serine-Threonine Kinases , Trans-Activators , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Myocytes, Smooth Muscle/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Inflammation/metabolism , Inflammation/pathology , Signal Transduction , Cytokines/metabolism , Phosphorylation , Transcription Factors/metabolism , Transcription Factors/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cells, Cultured
2.
Am J Physiol Cell Physiol ; 325(6): C1485-C1501, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37927241

ABSTRACT

A role of Yes1-associated transcriptional regulator (YAP) and WW domain-containing transcription regulator 1 (TAZ) in vascular and gastrointestinal contractility due to control of myocardin (Myocd) expression, which in turn activates contractile genes, has been demonstrated. Whether this transcriptional hierarchy applies to the urinary bladder is unclear. We found that YAP/TAZ are expressed in human detrusor myocytes and therefore exploited the Itga8-CreERT2 model for the deletion of YAP/TAZ. Recombination occurred in detrusor, and YAP/TAZ transcripts were reduced by >75%. Bladder weights were increased (by ≈22%), but histology demonstrated minimal changes in the detrusor, while arteries in the mucosa were inflamed. Real-time quantitative reverse transcription PCR (RT-qPCR) using the detrusor demonstrated reductions of Myocd (-79 ± 18%) and serum response factor (Srf) along with contractile genes. In addition, the cholinergic receptor muscarinic 2 (Chrm2) and Chrm3 were suppressed (-80 ± 23% and -80 ± 10%), whereas minute increases of Il1b and Il6 were seen. Unlike YAP/TAZ-deficient arteries, SRY (sex-determining region Y)-box 9 (Sox9) did not increase, and no chondrogenic differentiation was apparent. Reductions of smooth muscle myosin heavy chain 11 (Myh11), myosin light-chain kinase gene (Mylk), and Chrm3 were seen at the protein level. Beyond restraining the smooth muscle cell (SMC) program of gene expression, YAP/TAZ depletion silenced SMC-specific splicing, including exon 2a of Myocd. Reduced contractile differentiation was associated with weaker contraction in response to myosin phosphatase inhibition (-36%) and muscarinic activation (reduced by 53% at 0.3 µM carbachol). Finally, short-term overexpression of constitutively active YAP in human embryonic kidney 293 (HEK293) cells increased myocardin (greater than eightfold) along with archetypal target genes, but contractile genes were unaffected or reduced. YAP and TAZ thus regulate myocardin expression in the detrusor, and this is important for SMC differentiation and splicing as well as for contractility.NEW & NOTEWORTHY This study addresses the hypothesis that YAP and TAZ have an overarching role in the transcriptional hierarchy in the smooth muscle of the urinary bladder by controlling myocardin expression. Using smooth muscle-specific and inducible deletion of YAP and TAZ in adult mice, we find that YAP and TAZ control myocardin expression, contractile differentiation, smooth muscle-specific splicing, and bladder contractility. These effects are largely independent of inflammation and chondrogenic differentiation.


Subject(s)
Intracellular Signaling Peptides and Proteins , Urinary Bladder , Adult , Mice , Humans , Animals , HEK293 Cells , Cell Differentiation/genetics , Inflammation , Cholinergic Agents
3.
JCI Insight ; 8(17)2023 09 08.
Article in English | MEDLINE | ID: mdl-37561588

ABSTRACT

Inadequate adaption to mechanical forces, including blood pressure, contributes to development of arterial aneurysms. Recent studies have pointed to a mechanoprotective role of YAP and TAZ in vascular smooth muscle cells (SMCs). Here, we identified reduced expression of YAP1 in human aortic aneurysms. Vascular SMC-specific knockouts (KOs) of YAP/TAZ were thus generated using the integrin α8-Cre (Itga8-Cre) mouse model (i8-YT-KO). i8-YT-KO mice spontaneously developed aneurysms in the abdominal aorta within 2 weeks of KO induction and in smaller arteries at later times. The vascular specificity of Itga8-Cre circumvented gastrointestinal effects. Aortic aneurysms were characterized by elastin disarray, SMC apoptosis, and accumulation of proteoglycans and immune cell populations. RNA sequencing, proteomics, and myography demonstrated decreased contractile differentiation of SMCs and impaired vascular contractility. This associated with partial loss of myocardin expression, reduced blood pressure, and edema. Mediators in the inflammatory cGAS/STING pathway were increased. A sizeable increase in SOX9, along with several direct target genes, including aggrecan (Acan), contributed to proteoglycan accumulation. This was the earliest detectable change, occurring 3 days after KO induction and before the proinflammatory transition. In conclusion, Itga8-Cre deletion of YAP and TAZ represents a rapid and spontaneous aneurysm model that recapitulates features of human abdominal aortic aneurysms.


Subject(s)
Aortic Aneurysm, Abdominal , Aortic Aneurysm , Animals , Humans , Mice , Aorta, Abdominal , Aortic Aneurysm/genetics , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/metabolism , Disease Models, Animal , Muscle, Smooth, Vascular/metabolism
4.
Cell Mol Life Sci ; 79(8): 459, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35913515

ABSTRACT

Differentiation of smooth muscle cells (SMCs) depends on serum response factor (SRF) and its co-activator myocardin (MYOCD). The role of MYOCD for the SMC program of gene transcription is well established. In contrast, the role of MYOCD in control of SMC-specific alternative exon usage, including exon splicing, has not been explored. In the current work we identified four splicing factors (MBNL1, RBPMS, RBPMS2, and RBFOX2) that correlate with MYOCD across human SMC tissues. Forced expression of MYOCD family members in human coronary artery SMCs in vitro upregulated expression of these splicing factors. For global profiling of transcript diversity, we performed RNA-sequencing after MYOCD transduction. We analyzed alternative transcripts with three different methods. Exon-based analysis identified 1637 features with differential exon usage. For example, usage of 3´ exons in MYLK that encode telokin increased relative to 5´ exons, as did the 17 kDa telokin to 130 kDa MYLK protein ratio. Dedicated event-based analysis identified 239 MYOCD-driven splicing events. Events involving MBNL1, MCAM, and ACTN1 were among the most prominent, and this was confirmed using variant-specific PCR analyses. In support of a role for RBPMS and RBFOX2 in MYOCD-driven splicing we found enrichment of their binding motifs around differentially spliced exons. Moreover, knockdown of either RBPMS or RBFOX2 antagonized splicing events stimulated by MYOCD, including those involving ACTN1, VCL, and MBNL1. Supporting an in vivo role of MYOCD-SRF-driven splicing, we demonstrate altered Rbpms expression and splicing in inducible and SMC-specific Srf knockout mice. We conclude that MYOCD-SRF, in part via RBPMS and RBFOX2, induce a program of differential exon usage and alternative splicing as part of the broader program of SMC differentiation.


Subject(s)
Alternative Splicing , Myocytes, Smooth Muscle , Alternative Splicing/genetics , Animals , Cell Differentiation/genetics , Exons/genetics , Humans , Mice , Myocytes, Smooth Muscle/metabolism , Nuclear Proteins , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Repressor Proteins/metabolism , Trans-Activators
5.
Arterioscler Thromb Vasc Biol ; 42(4): 428-443, 2022 04.
Article in English | MEDLINE | ID: mdl-35196875

ABSTRACT

BACKGROUND: Hypertension remains a major risk factor for cardiovascular diseases, but the underlying mechanisms are not well understood. We hypothesize that appropriate mechanotransduction and contractile function in vascular smooth muscle cells are crucial to maintain vascular wall integrity. The Hippo pathway effectors YAP (yes-associated protein 1) and TAZ (WW domain containing transcription regulator 1) have been identified as mechanosensitive transcriptional coactivators. However, their role in vascular smooth muscle cell mechanotransduction has not been investigated in vivo. METHODS: We performed physiological and molecular analyses utilizing an inducible smooth muscle-specific YAP/TAZ knockout mouse model. RESULTS: Arteries lacking YAP/TAZ have reduced agonist-mediated contraction, decreased myogenic response, and attenuated stretch-induced transcriptional regulation of smooth muscle markers. Moreover, in established hypertension, YAP/TAZ knockout results in severe vascular lesions in small mesenteric arteries characterized by neointimal hyperplasia, elastin degradation, and adventitial thickening. CONCLUSIONS: This study demonstrates a protective role of YAP/TAZ against hypertensive vasculopathy.


Subject(s)
Adaptor Proteins, Signal Transducing , Hypertension , Muscle, Smooth, Vascular , YAP-Signaling Proteins , Adaptor Proteins, Signal Transducing/metabolism , Animals , Hypertension/metabolism , Mechanotransduction, Cellular , Mice , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phosphoproteins/metabolism , YAP-Signaling Proteins/metabolism
6.
Front Physiol ; 12: 732564, 2021.
Article in English | MEDLINE | ID: mdl-34671275

ABSTRACT

Myocardin related transcription factors (MRTFs: MYOCD/myocardin, MRTF-A, and MRTF-B) play a key role in smooth muscle cell differentiation by activating contractile genes. In atherosclerosis, MRTF levels change, and most notable is a fall of MYOCD. Previous work described anti-inflammatory properties of MRTF-A and MYOCD, occurring through RelA binding, suggesting that MYOCD reduction could contribute to vascular inflammation. Recent studies have muddled this picture showing that MRTFs may show both anti- and pro-inflammatory properties, but the basis of these discrepancies remain unclear. Moreover, the impact of MRTFs on inflammatory signaling pathways in tissues relevant to human arterial disease is uncertain. The current work aimed to address these issues. RNA-sequencing after forced expression of myocardin in human coronary artery smooth muscle cells (hCASMCs) showed reduction of pro-inflammatory transcripts, including CCL2, CXCL8, IL6, and IL1B. Side-by-side comparison of MYOCD, MRTF-A, and MRTF-B in hCASMCs, showed that the anti-inflammatory impact was shared among MRTFs. Correlation analyses using human arterial transcriptomic datasets revealed negative correlations between MYOCD, MRTFA, and SRF, on the one hand, and the inflammatory transcripts, on the other. A pro-inflammatory drive from lipopolysaccharide, did not change the size of the suppressive effect of MRTF-A in hCASMCs on either mRNA or protein levels. To examine cell type-dependence, we compared the anti-inflammatory impact in hCASMCs, with that in human bladder SMCs, in endothelial cells, and in monocytes (THP-1 cells). Surprisingly, little anti-inflammatory activity was seen in endothelial cells and monocytes, and in bladder SMCs, MRTF-A was pro-inflammatory. CXCL8, IL6, and IL1B were increased by the MRTF-SRF inhibitor CCG-1423 and by MRTF-A silencing in hCASMCs, but depolymerization of actin, known to inhibit MRTF activity, had no stimulatory effect, an exception being IL1B. Co-immunoprecipitation supported binding of MRTF-A to RelA, supporting sequestration of this important pro-inflammatory mediator as a mechanism. Dexamethasone treatment and silencing of RelA (by 76 ± 1%) however only eliminated a fraction of the MRTF-A effect (≈25%), suggesting mechanisms beyond RelA binding. Indeed, SRF silencing suggested that MRTF-A suppression of IL1B and CXCL8 depends on SRF. This work thus supports an anti-inflammatory impact of MRTF-SRF signaling in hCASMCs and in intact human arteries, but not in several other cell types.

7.
Front Physiol ; 12: 710968, 2021.
Article in English | MEDLINE | ID: mdl-34539433

ABSTRACT

Myocardin-related transcription factors (MRTFs: myocardin/MYOCD, MRTF-A/MRTFA, and MRTF-B/MRTFB) are co-factors of serum response factor (SRF) that activate the smooth muscle cell (SMC) gene program and that play roles in cardiovascular development and mechanobiology. Gain and loss of function experiments have defined the SMC gene program under control of MRTFs, yet full understanding of their impact is lacking. In the present study, we tested the hypothesis that the muscarinic M3 receptor (CHRM3) is regulated by MRTFs together with SRF. Forced expression of MYOCD (8d) in human coronary artery (SMC) followed by RNA-sequencing showed increased levels of M2, M3, and M5 receptors (CHRM2: 2-fold, CHRM3: 16-fold, and CHRM5: 2-fold). The effect of MYOCD on M3 was confirmed by RT-qPCR using both coronary artery and urinary bladder SMCs, and correlation analyses using human transcriptomic datasets suggested that M3 may also be regulated by MRTF-B. Head-to-head comparisons of MYOCD, MRTF-A and MRTF-B, argued that while all MRTFs are effective, MRTF-B is the most powerful transactivator of CHRM3, causing a 600-fold increase at 120h. Accordingly, MRTF-B conferred responsiveness to the muscarinic agonist carbachol in Ca2+ imaging experiments. M3 was suppressed on treatment with the MRTF-SRF inhibitor CCG-1423 using SMCs transduced with either MRTF-A or MRTF-B and using intact mouse esophagus in culture (by 92±2%). Moreover, silencing of SRF with a short hairpin reduced CHRM3 (by >60%) in parallel with α-actin (ACTA2). Tamoxifen inducible knockout of Srf in smooth muscle reduced Srf (by 54±4%) and Chrm3 (by 41±6%) in the urinary bladder at 10days, but Srf was much less reduced or unchanged in aorta, ileum, colon, trachea, and esophagus. Longer induction (21d) further accentuated the reduction of Chrm3 in the bladder and ileum, but no change was seen in the aorta. Single cell RNA-sequencing revealed that Mrtfb dominates in ECs, while Myocd dominates in SMCs, raising the possibility that Chrm3 may be driven by Mrtfb-Srf in the endothelium and by Myocd-Srf in SMCs. These findings define a novel transcriptional control mechanism for muscarinic M3 receptors in human cells, and in mice, that could be targeted for therapy.

8.
Sci Rep ; 11(1): 5955, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33727640

ABSTRACT

The present work addressed the hypothesis that NG2/CSPG4, CD146/MCAM, and VAP1/AOC3 are target genes of myocardin-related transcription factors (MRTFs: myocardin/MYOCD, MRTF-A/MKL1, MRTF-B/MKL2) and serum response factor (SRF). Using a bioinformatics approach, we found that CSPG4, MCAM, and AOC3 correlate with MYOCD, MRTF-A/MKL1, and SRF across human tissues. No other transcription factor correlated as strongly with these transcripts as SRF. Overexpression of MRTFs increased both mRNA and protein levels of CSPG4, MCAM, and AOC3 in cultured human smooth muscle cells (SMCs). Imaging confirmed increased staining for CSPG4, MCAM, and AOC3 in MRTF-A/MKL1-transduced cells. MRTFs exert their effects through SRF, and the MCAM and AOC3 gene loci contained binding sites for SRF. SRF silencing reduced the transcript levels of these genes, and time-courses of induction paralleled the direct target ACTA2. MRTF-A/MKL1 increased the activity of promoter reporters for MCAM and AOC3, and transcriptional activation further depended on the chromatin remodeling enzyme KDM3A. CSPG4, MCAM, and AOC3 responded to the MRTF-SRF inhibitor CCG-1423, to actin dynamics, and to ternary complex factors. Coincidental detection of these proteins should reflect MRTF-SRF activity, and beyond SMCs, we observed co-expression of CD146/MCAM, NG2/CSPG4, and VAP1/AOC3 in pericytes and endothelial cells in the human brain. This work identifies highly responsive vascular target genes of MRTF-SRF signaling that are regulated via a mechanism involving KDM3A.


Subject(s)
Amine Oxidase (Copper-Containing)/genetics , Cell Adhesion Molecules/genetics , Chondroitin Sulfate Proteoglycans/genetics , Gene Expression Regulation , Membrane Proteins/genetics , Myocytes, Smooth Muscle/metabolism , Transcription Factors/metabolism , CD146 Antigen/genetics , Cell Differentiation , Cell Line , Gene Knockdown Techniques , Humans , Immunohistochemistry , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Nuclear Proteins/metabolism , Organ Specificity , Protein Binding , Trans-Activators/metabolism , Transcription Factors/genetics
9.
Vascul Pharmacol ; 138: 106837, 2021 06.
Article in English | MEDLINE | ID: mdl-33516965

ABSTRACT

OBJECTIVE: Smooth muscle cells contribute significantly to lipid-laden foam cells in atherosclerotic plaques. However, the underlying mechanisms transforming smooth muscle cells into foam cells are poorly understood. The purpose of this study was to gain insight into the molecular mechanisms regulating smooth muscle foam cell formation. APPROACH AND RESULTS: Using human coronary artery smooth muscle cells we found that the transcriptional co-activator MRTFA promotes lipid accumulation via several mechanisms, including direct transcriptional control of LDL receptor, enhanced fluid-phase pinocytosis and reduced lipid efflux. Inhibition of MRTF activity with CCG1423 and CCG203971 significantly reduced lipid accumulation. Furthermore, we demonstrate enhanced MRTFA expression in vascular remodeling of human vessels. CONCLUSIONS: This study demonstrates a novel role for MRTFA as an important regulator of lipid homeostasis in vascular smooth muscle cells. Thus, MRTFA could potentially be a new therapeutic target for inhibition of vascular lipid accumulation.


Subject(s)
Cell Transdifferentiation , Foam Cells/metabolism , Lipid Metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Trans-Activators/metabolism , Coronary Vessels/metabolism , Coronary Vessels/pathology , Foam Cells/pathology , HEK293 Cells , Humans , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Neointima , Pinocytosis , Receptors, LDL/genetics , Receptors, LDL/metabolism , Trans-Activators/genetics , Up-Regulation , Vascular Remodeling
10.
Cell Mol Gastroenterol Hepatol ; 11(2): 623-637, 2021.
Article in English | MEDLINE | ID: mdl-32992050

ABSTRACT

BACKGROUND & AIMS: YAP (Yap1) and TAZ (Wwtr1) are transcriptional co-activators and downstream effectors of the Hippo pathway, which play crucial roles in organ size control and cancer pathogenesis. Genetic deletion of YAP/TAZ has shown their critical importance for embryonic development of the heart, vasculature, and gastrointestinal mesenchyme. The aim of this study was to determine the functional role of YAP/TAZ in adult smooth muscle cells in vivo. METHODS: Because YAP and TAZ are mutually redundant, we used YAP/TAZ double-floxed mice crossed with mice that express tamoxifen-inducible CreERT2 recombinase driven by the smooth muscle-specific myosin heavy chain promoter. RESULTS: Double-knockout of YAP/TAZ in adult smooth muscle causes lethality within 2 weeks, mainly owing to colonic pseudo-obstruction, characterized by severe distension and fecal impaction. RNA sequencing in colon and urinary bladder showed that smooth muscle markers and muscarinic receptors were down-regulated in the YAP/TAZ knockout. The same transcripts also correlated with YAP/TAZ in the human colon. Myograph experiments showed reduced contractility to depolarization by potassium chloride and a nearly abolished muscarinic contraction and spontaneous activity in colon rings of YAP/TAZ knockout. CONCLUSIONS: YAP and TAZ in smooth muscle are guardians of colonic contractility and control expression of contractile proteins and muscarinic receptors. The knockout model has features of human chronic intestinal pseudo-obstruction and may be useful for studying this disease.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Colon/physiopathology , Colonic Pseudo-Obstruction/genetics , Muscle, Smooth/physiopathology , YAP-Signaling Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Colonic Pseudo-Obstruction/physiopathology , Disease Models, Animal , Female , Gastrointestinal Motility/genetics , Humans , Male , Mice , Mice, Knockout , Muscle Contraction/genetics , YAP-Signaling Proteins/metabolism
11.
Inflamm Res ; 69(6): 579-588, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32221618

ABSTRACT

OBJECTIVE: The importance of human host defense peptide LL-37 in vascular innate immunity is not understood. Here, we assess the impact of LL-37 on double-stranded RNA (dsRNA) signaling in human vascular smooth muscle cells. MATERIALS AND METHODS: Cellular import of LL-37 and synthetic dsRNA (poly I:C) were investigated by immunocytochemistry and fluorescence imaging. Transcript and protein expression were determined by qPCR, ELISA and Western blot. Knockdown of TLR3 was performed by siRNA. RESULTS: LL-37 was rapidly internalized, suggesting that it has intracellular actions. Co-stimulation with poly I:C and LL-37 enhanced pro-inflammatory IL-6 and MCP-1 transcripts several fold compared to treatment with poly I:C or LL-37 alone. Poly I:C increased IL-6 and MCP-1 protein production, and this effect was potentiated by LL-37. LL-37-induced stimulation of poly I:C signaling was not associated with enhanced import of poly I:C. Treatment with poly I:C and LL-37 in combination increased expression of dsRNA receptor TLR3 compared to stimulation with poly I:C or LL-37 alone. In TLR3 knockdown cells, treatment with poly I:C and LL-37 in combination had no effect on IL-6 and MCP-1 expression, showing loss of function. CONCLUSIONS: LL-37 potentiates dsRNA-induced cytokine production through up-regulation of TLR3 expression representing a novel pro-inflammatory mechanism.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Myocytes, Smooth Muscle/metabolism , RNA, Double-Stranded/metabolism , Toll-Like Receptor 3/genetics , Cell Survival , Cells, Cultured , Chemokine CCL2/metabolism , Coronary Vessels/cytology , Humans , Inflammation/genetics , Inflammation/metabolism , Interleukin-6/metabolism , Muscle, Smooth, Vascular/cytology , Poly I-C , RNA, Small Interfering , Signal Transduction , Toll-Like Receptor 3/metabolism , Up-Regulation , Cathelicidins
12.
J Cell Physiol ; 235(10): 7370-7382, 2020 10.
Article in English | MEDLINE | ID: mdl-32039481

ABSTRACT

Smooth muscle cells (SMCs) are characterized by a high degree of phenotypic plasticity. Contractile differentiation is governed by myocardin-related transcription factors (MRTFs), in particular myocardin (MYOCD), and when their drive is lost, the cells become proliferative and synthetic with an expanded endoplasmic reticulum (ER). ER is responsible for assembly and folding of secreted proteins. When the load on the ER surpasses its capacity, three stress sensors (activating transcription factor 6 [ATF6], inositol-requiring enzyme 1α [IRE1α]/X-box binding protein 1 [XBP1], and PERK/ATF4) are activated to expand the ER and increase its folding capacity. This is referred to as the unfolded protein response (UPR). Here, we hypothesized that there is a reciprocal relationship between SMC differentiation and the UPR. Tight negative correlations between SMC markers (MYH11, MYOCD, KCNMB1, SYNPO2) and UPR markers (SDF2L1, CALR, MANF, PDIA4) were seen in microarray data sets from carotid arterial injury, partial bladder outlet obstruction, and bladder denervation, respectively. The UPR activators dithiothreitol (DTT) and tunicamycin (TN) activated the UPR and reduced MYOCD along with SMC markers in vitro. The IRE1α inhibitor 4µ8C counteracted the effect of DTT and TN on SMC markers and MYOCD expression. Transfection of active XBP1s was sufficient to reduce both MYOCD and the SMC markers. MRTFs also antagonized the UPR as indicated by reduced TN and DTT-mediated induction of CRELD2, MANF, PDIA4, and SDF2L1 following overexpression of MRTFs. The latter effect did not involve the newly identified MYOCD/SRF target MSRB3, or reduced production of either XBP1s or cleaved ATF6. The UPR thus counteracts SMC differentiation via the IRE1α/XBP1 arm of the UPR and MYOCD repression.


Subject(s)
Muscle, Smooth/metabolism , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Transcription, Genetic/physiology , Unfolded Protein Response/physiology , Biomarkers/metabolism , Cell Differentiation/physiology , Cells, Cultured , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , Humans , Myocytes, Smooth Muscle/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism , Urinary Bladder/metabolism
13.
Am J Physiol Cell Physiol ; 317(6): C1128-C1142, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31461342

ABSTRACT

Myocardin (MYOCD) is a critical regulator of smooth muscle cell (SMC) differentiation, but its transcriptional targets remain to be exhaustively characterized, especially at the protein level. Here we leveraged human RNA and protein expression data to identify novel potential MYOCD targets. Using correlation analyses we found several targets that we could confirm at the protein level, including SORBS1, SLMAP, SYNM, and MCAM. We focused on SYNM, which encodes the intermediate filament protein synemin. SYNM rivalled smooth muscle myosin (MYH11) for SMC specificity and was controlled at the mRNA and protein levels by all myocardin-related transcription factors (MRTFs: MYOCD, MRTF-A/MKL1, and MRTF-B/MKL2). MRTF activity is regulated by the ratio of filamentous to globular actin, and SYNM was accordingly reduced by interventions that depolymerize actin, such as latrunculin treatment and overexpression of constitutively active cofilin. Many MRTF target genes depend on serum response factor (SRF), but SYNM lacked SRF-binding motifs in its proximal promoter, which was not directly regulated by MYOCD. Furthermore, SYNM resisted SRF silencing, yet the time course of induction closely paralleled that of the SRF-dependent target gene ACTA2. SYNM was repressed by the ternary complex factor (TCF) FLI1 and was increased in mouse embryonic fibroblasts lacking three classical TCFs (ELK1, ELK3, and ELK4). Imaging showed colocalization of SYNM with the intermediate filament proteins desmin and vimentin, and MRTF-A/MKL1 increased SYNM-containing intermediate filaments in SMCs. These studies identify SYNM as a novel SRF-independent target of myocardin that is abundantly expressed in all SMCs.


Subject(s)
Cofilin 2/genetics , Intermediate Filament Proteins/genetics , Myocytes, Smooth Muscle/metabolism , Nuclear Proteins/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Actins/genetics , Actins/metabolism , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , CD146 Antigen/genetics , CD146 Antigen/metabolism , Cell Line , Cofilin 2/metabolism , Coronary Vessels/cytology , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Desmin/genetics , Desmin/metabolism , Gene Expression Regulation , Humans , Intermediate Filament Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Nuclear Proteins/metabolism , Primary Cell Culture , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Serum Response Factor/genetics , Serum Response Factor/metabolism , Signal Transduction , Thiazolidines/pharmacology , Trans-Activators/metabolism , Transcription Factors/metabolism , Urinary Bladder/cytology , Urinary Bladder/drug effects , Urinary Bladder/metabolism , Vimentin/genetics , Vimentin/metabolism
14.
Am J Physiol Cell Physiol ; 315(6): C873-C884, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30332284

ABSTRACT

The endothelin type B receptor (ETB or EDNRB) is highly plastic and is upregulated in smooth muscle cells (SMCs) by arterial injury and following organ culture in vitro. We hypothesized that this transcriptional plasticity may arise, in part, because EDNRB is controlled by a balance of transcriptional inputs from myocardin-related transcription factors (MRTFs) and ternary complex factors (TCFs). We found significant positive correlations between the TCFs ELK3 and FLI1 versus EDNRB in human arteries. The MRTF MKL2 also correlated with EDNRB. Overexpression of ELK3, FLI1, and MKL2 in human coronary artery SMCs promoted expression of EDNRB, and the effect of MKL2 was antagonized by myocardin (MYOCD), which also correlated negatively with EDNRB at the tissue level. Silencing of MKL2 reduced basal EDNRB expression, but depolymerization of actin using latrunculin B (LatB) or overexpression of constitutively active cofilin, as well as treatment with the Rho-associated kinase (ROCK) inhibitor Y27632, increased EDNRB in a MEK/ERK-dependent fashion. Transcript-specific primers indicated that the second EDNRB transcript (EDNRB_2) was targeted, but this promoter was largely unresponsive to LatB and was inhibited rather than stimulated by MKL2 and FLI1, suggesting distant control elements or an indirect effect. LatB also reduced expression of endothelin-1, but supplementation experiments argued that this was not the cause of EDNRB induction. EDNRB finally changed in parallel with ELK3 and FLI1 in rat and human carotid artery lesions. These studies implicate the actin cytoskeleton and ELK3, FLI1, and MKL2 in the transcriptional control of EDNRB and increase our understanding of the plasticity of this receptor.


Subject(s)
Actin Cytoskeleton/genetics , Carotid Artery Injuries/genetics , Proto-Oncogene Proteins/genetics , Receptor, Endothelin B/genetics , Transcription Factors/genetics , Actin Cytoskeleton/metabolism , Actin Depolymerizing Factors/pharmacology , Amides/pharmacology , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Endothelin-1/genetics , Gene Expression Regulation, Developmental/drug effects , Humans , Myocytes, Smooth Muscle/metabolism , Nuclear Proteins/genetics , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Proteins c-ets , Pyridines/pharmacology , Rats , Ternary Complex Factors/genetics , Thiazolidines/pharmacology , Trans-Activators/genetics , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/genetics
15.
Sci Rep ; 8(1): 13025, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30158653

ABSTRACT

Nexilin, encoded by the NEXN gene, is expressed in striated muscle and localizes to Z-discs, influencing mechanical stability. We examined Nexilin/NEXN in smooth muscle cells (SMCs), and addressed if Nexilin localizes to dense bodies and dense bands and whether it is regulated by actin-controlled coactivators from the MRTF (MYOCD, MKL1, MKL2) and YAP/TAZ (YAP1 and WWTR1) families. NEXN expression in SMCs was comparable to that in striated muscles. Immunofluorescence and immunoelectron microscopy suggested that Nexilin localizes to dense bodies and dense bands. Correlations at the mRNA level suggested that NEXN expression might be controlled by actin polymerization. Depolymerization of actin using Latrunculin B repressed the NEXN mRNA and protein in bladder and coronary artery SMCs. Overexpression and knockdown supported involvement of both YAP/TAZ and MRTFs in the transcriptional control of NEXN. YAP/TAZ and MRTFs appeared equally important in bladder SMCs, whereas MRTFs dominated in vascular SMCs. Expression of NEXN was moreover reduced in situations of SMC phenotypic modulation in vivo. The proximal promoter of NEXN conferred control by MRTF-A/MKL1 and MYOCD. NEXN silencing reduced actin polymerization and cell migration, as well as SMC marker expression. NEXN targeting by actin-controlled coactivators thus amplifies SMC differentiation through the actin cytoskeleton, probably via dense bodies and dense bands.


Subject(s)
Actins/metabolism , Microfilament Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Protein Multimerization , Adaptor Proteins, Signal Transducing/metabolism , Cell Differentiation , Cells, Cultured , Gene Expression Profiling , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Microscopy, Fluorescence , Microscopy, Immunoelectron , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , RNA, Messenger/analysis , Trans-Activators/metabolism , Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
16.
Cardiovasc Pathol ; 35: 12-19, 2018.
Article in English | MEDLINE | ID: mdl-29729633

ABSTRACT

Thrombospondin 4 (TSP-4) expression is induced in the heart and vasculature under pathological conditions, including myocardial infarction, myocardial pressure overload, and hypertension. TSP-4 is linked to remodelling processes, where it may affect extracellular matrix protein organization. In previous work, we studied the role of TSP-4 in small arteries during hypertension using Ang II-treated Thrombospondin 4 knockout (Thbs4-/-) mice. We reported increased heart weight, as well as the occurrence of aortic aneurysms in the Ang II-treated Thbs4-/- animals. In the present study, we further characterized the hearts and aortas from these animals. Hypertrophy of cardiomyocytes, together with perivascular fibrosis and inflammation was observed in the Ang II-treated Thbs4-/- hearts. In the aortas, an increase in the aortic wall cross-sectional area (CSA) and wall thickness of the Ang II-treated Thbs4-/- mice was found. More detailed investigation of the Ang II-treated Thbs4-/- aortas also revealed the appearance of aortic dissections in the outer medial layer of the arteries, as well as pronounced inflammation. No differences were found in several other extracellular matrix-related parameters, such as number of elastin breaks or stress-strain relationships. However, at the ultrastructural level, collagen fibers showed alterations in diameter in the media and adventitia of the Ang II-treated Thbs4-/- mice, in the area prone to dissection. In conclusion, we identified TSP-4 as an important protein in the development of cardiac hypertrophy and aortic dissections in Ang II-induced hypertension.


Subject(s)
Angiotensin II , Aortic Aneurysm/metabolism , Aortic Dissection/metabolism , Cardiomegaly/metabolism , Hypertension/metabolism , Thrombospondins/metabolism , Vascular Remodeling , Ventricular Remodeling , Aortic Dissection/chemically induced , Aortic Dissection/genetics , Aortic Dissection/pathology , Animals , Aorta/metabolism , Aorta/ultrastructure , Aortic Aneurysm/chemically induced , Aortic Aneurysm/genetics , Aortic Aneurysm/pathology , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Cardiomegaly/pathology , Dilatation, Pathologic , Disease Models, Animal , Fibrillar Collagens/metabolism , Fibrillar Collagens/ultrastructure , Fibrosis , Hypertension/chemically induced , Hypertension/genetics , Hypertension/pathology , Mice, Knockout , Myocardium/metabolism , Myocardium/ultrastructure , Thrombospondins/deficiency , Thrombospondins/genetics
17.
Arterioscler Thromb Vasc Biol ; 38(2): 414-424, 2018 02.
Article in English | MEDLINE | ID: mdl-29217510

ABSTRACT

OBJECTIVE: Pressure-induced myogenic tone is involved in autoregulation of local blood flow and confers protection against excessive pressure levels in small arteries and capillaries. Myogenic tone is dependent on smooth muscle microRNAs (miRNAs), but the identity of these miRNAs is unclear. Furthermore, the consequences of altered myogenic tone for hypertension-induced damage to small arteries are not well understood. APPROACH AND RESULTS: The importance of smooth muscle-enriched microRNAs, miR-143/145, for myogenic tone was evaluated in miR-143/145 knockout mice. Furthermore, hypertension-induced vascular injury was evaluated in mesenteric arteries in vivo after angiotensin II infusion. Myogenic tone was abolished in miR-143/145 knockout mesenteric arteries, whereas contraction in response to calyculin A and potassium chloride was reduced by ≈30%. Furthermore, myogenic responsiveness was potentiated by angiotensin II in wild-type but not in knockout mice. Angiotensin II administration in vivo elevated systemic blood pressure in both genotypes. Hypertensive knockout mice developed severe vascular lesions characterized by vascular inflammation, adventitial fibrosis, and neointimal hyperplasia in small mesenteric arteries. This was associated with depolymerization of actin filaments and fragmentation of the elastic laminae at the sites of vascular lesions. CONCLUSIONS: This study demonstrates that miR-143/145 expression is essential for myogenic responsiveness. During hypertension, loss of myogenic tone results in potentially damaging levels of mechanical stress and detrimental effects on small arteries. The results presented herein provide novel insights into the pathogenesis of vascular disease and emphasize the importance of controlling mechanical factors to maintain structural integrity of the vascular wall.


Subject(s)
Arterial Pressure , Hypertension/metabolism , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Vascular Remodeling , Vasoconstriction , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/pathology , Angiotensin II , Animals , Calcium Signaling , Cells, Cultured , Disease Models, Animal , Elastic Tissue/metabolism , Elastic Tissue/pathology , Female , Fibrosis , Gene Knockout Techniques , Hyperplasia , Hypertension/genetics , Hypertension/pathology , Hypertension/physiopathology , Male , Mesenteric Arteries/metabolism , Mesenteric Arteries/pathology , Mesenteric Arteries/physiopathology , Mice, Knockout , MicroRNAs/genetics , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Neointima , Vascular Resistance
18.
J Vasc Res ; 54(4): 246-256, 2017.
Article in English | MEDLINE | ID: mdl-28796998

ABSTRACT

BACKGROUND: Serotonin (5-HT) is considered to play a role in pulmonary arterial hypertension by regulating vascular remodeling and smooth muscle contractility. Here, arteries from mice with inducible and smooth muscle-specific deletion of Dicer were used to address mechanisms by which microRNAs control 5-HT-induced contraction. METHODS: Mice were used 5 weeks after Dicer deletion, and pulmonary artery contractility was analyzed by wire myography. RESULTS: No change was seen in right ventricular systolic pressure following dicer deletion, but systemic blood pressure was reduced. Enhanced 5-HT-induced contraction in Dicer KO pulmonary arteries was associated with increased 5-HT2A receptor mRNA expression whereas 5-HT1B and 5-HT2B receptor mRNAs were unchanged. Contraction by the 5-HT2A agonist TCB-2 was increased in Dicer KO as was the response to the 5-HT2B agonist BW723C86. Effects of Src and protein kinase C inhibition were similar in control and KO arteries, but the effect of inhibition of Rho kinase was reduced. We identified miR-30c as a potential candidate for 5-HT2A receptor regulation as it repressed 5-HT2A mRNA and protein. CONCLUSION: Our findings show that 5-HT receptor signaling in the arterial wall is subject to regulation by microRNAs and that this entails altered 5-HT2A receptor expression and signaling.


Subject(s)
MicroRNAs/metabolism , Pulmonary Artery/drug effects , Serotonin/pharmacology , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , Animals , Cells, Cultured , DEAD-box RNA Helicases/deficiency , DEAD-box RNA Helicases/genetics , Dose-Response Relationship, Drug , Gene Expression Regulation , Genotype , Male , Mice, Knockout , MicroRNAs/genetics , Myography , Phenotype , Protein Kinase C/metabolism , Pulmonary Artery/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Ribonuclease III/deficiency , Ribonuclease III/genetics , Signal Transduction/drug effects , Transfection , rho-Associated Kinases/metabolism , src-Family Kinases/metabolism
19.
Sci Rep ; 7(1): 1334, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28465505

ABSTRACT

Hypertension is a dominating risk factor for cardiovascular disease. To characterize the genomic response to hypertension, we administered vehicle or angiotensin II to mice and performed gene expression analyses. AngII treatment resulted in a robust increase in blood pressure and altered expression of 235 genes in the aorta, including Gucy1a3 and Gucy1b3 which encode subunits of soluble guanylyl cyclase (sGC). Western blotting and immunohistochemistry confirmed repression of sGC associated with curtailed relaxation via sGC activation. Analysis of transcription factor binding motifs in promoters of differentially expressed genes identified enrichment of motifs for RBPJ, a component of the Notch signaling pathway, and the Notch coactivators FRYL and MAML2 were reduced. Gain and loss of function experiments demonstrated that JAG/NOTCH signaling controls sGC expression together with MAML2 and FRYL. Reduced expression of sGC, correlating with differential expression of MAML2, in stroke prone and spontaneously hypertensive rats was also seen, and RNA-Seq data demonstrated correlations between JAG1, NOTCH3, MAML2 and FRYL and the sGC subunits GUCY1A3 and GUCY1B3 in human coronary artery. Notch signaling thus provides a constitutive drive on expression of the major nitric oxide receptor (GUCY1A3/GUCY1B3) in arteries from mice, rats, and humans, and this control mechanism is disturbed in hypertension.


Subject(s)
Aorta/metabolism , Hypertension/metabolism , Receptors, Notch/metabolism , Soluble Guanylyl Cyclase/metabolism , Angiotensin II/administration & dosage , Animals , Gene Expression , Humans , Hypertension/chemically induced , Hypertension/genetics , Mice, Inbred C57BL , RNA, Messenger/metabolism , Rats, Inbred WKY , Signal Transduction
20.
PLoS One ; 12(5): e0176759, 2017.
Article in English | MEDLINE | ID: mdl-28542204

ABSTRACT

Caveolae are membrane invaginations present at high densities in muscle and fat. Recent work has demonstrated that myocardin family coactivators (MYOCD, MKL1), which are important for contractile differentiation and cell motility, increase caveolin (CAV1, CAV2, CAV3) and cavin (CAVIN1, CAVIN2, CAVIN3) transcription, but several aspects of this control mechanism remain to be investigated. Here, using promoter reporter assays we found that both MKL1/MRTF-A and MKL2/MRTF-B control caveolins and cavins via their proximal promoter sequences. Silencing of MKL1 and MKL2 in smooth muscle cells moreover reduced CAV1 and CAVIN1 mRNA levels by well over 50%, as did treatment with second generation inhibitors of MKL activity. GATA6, which modulates expression of smooth muscle-specific genes, reduced CAV1 and CAV2, whereas the cavins were unaffected or increased. Viral overexpression of MKL1 and myocardin induced caveolin and cavin expression in bladder smooth muscle cells from rats and humans and MYOCD correlated tightly with CAV1 and CAVIN1 in human bladder specimens. A recently described activator of MKL-driven transcription (ISX) failed to induce CAV1/CAVIN1 which may be due to an unusual transactivation mechanism. In all, these findings further support the view that myocardin family coactivators are important transcriptional drivers of caveolins and cavins in smooth muscle.


Subject(s)
Caveolins/metabolism , Membrane Proteins/metabolism , Muscle, Smooth/metabolism , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Urinary Bladder/metabolism , Animals , Caveolins/genetics , Cells, Cultured , Female , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/metabolism , Promoter Regions, Genetic/genetics , Rats , Rats, Sprague-Dawley , Trans-Activators/genetics , Transcription, Genetic/genetics , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...