Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36734941

ABSTRACT

The English walnut (Juglans regia L.) is the second most important fruit crop of importance in Chile, with 43,700 hectares mainly in the Central Valley (www.odepa.cl, 2022). For several seasons symptoms of a branch dieback have been observed in walnut orchards with 3 to 50% of trees incidence levels. During the 2020 winter season (July) a total of 150 symptomatic spurs of 15 trees were sampled from an 8-year-old walnut cv. Chandler orchard located in Buin (33°42' S, 70° 42' W). The collected spurs showed external and internal brown necroses, starting from the tip with well-defined margins. The symptomatic tissue was cut in to small pieces (5 x 4 x 2 mm), surface disinfected by dipping in a 10% solution made from a commercial bleach solution (4,9% NaOHCl), rinsed twice in sterile water and plated on APDA (PDA Difco laboratories acidified with lactic acid (2,5 ml of 25% (vol/vol) per liter of medium). After five days at 20 °C in darkness, fast-growing, white-grey turning to black colonies were obtained, tentatively classified as a member of the Botryosphaeraceae family and two single-spore isolates (SS1, SS2) were selected for identification. Colony mycelia were first white and turned to light grey, dark grey or black, with tufts of mouse gray aerial mycelia. The pycnidia and conidia production was induced by inoculating autoclaved pine needles placed on APDA an incubation for 25 to 30 days at 20 °C in darkness. Black pycnidia solitary and globose were obtained producing hyaline, aseptate, fusiform to obovoid conidia with truncated ends with dimensions of (22.6-) 19.1 ± 1.4 (-13.3) x (6.7-) 5.5 ± 0.5 (-3.7) µm and 3.5 length/width ratio (n=100). Both isolates were identified using dichotomous keys confirming the description of Crous et al, 2006 as Neofusicoccum australe. The identification was molecularly confirmed by amplifying the nuclear ribosomal gene 5,8S (ITS1-5.8S-ITS2) using the ITS1/ITS4 primers, a partial region of ß-tubulin gene (Bt2a/Bt2b), and the translation elongation factor 1-α gene (TEF1) with TEF1-728F/TEF1-986R primers. The BLASTn search revealed 100% of identity for ITS and TEF according to sequences of N. australe reference strains MT587467.1 and MK759852.1, respectively; and over 99% for ß-tubulin compared to N. australe strain KX464929.1. The DNA sequences were submitted to the GenBank (ITS, OP142414, OP142416; BT, OP209981, OP209978; and TEF OP209979, OP209980) for SS1 and SS2 isolates, respectively, and deposited in the fungal collection of CChRGM - INIA, Chillán, Chile (RGM 3409 and 3410). Pathogenicity of both isolates was tested in 8-year-old asymtomatic English walnut cv. Chandler in the field during 2020 spring season, by cutting transversally 15 twigs of different tress and inoculating with a 5 day-old PDA plug. An equal number of wounded twigs were inoculated with a sterile PDA plug and served as control. After six months, all inoculated twigs developed the same necrotic lesions observed in field of 2.0 to 10.1 cm (SS1) and 1.9 to 10.8 cm (SS2) in length while control twigs showed only a scar without any dieback tissues. The inoculated pathogens of N. australe were recovered from the diseased tissues, thus fulfilling Koch's postulates. A similar dieback of walnut was reported in Chile, which caused Diplodia mutila (Díaz et al, 2018), and N. parvum (Luna et al, 2022) while N. australe has been reported in other hosts (Auger et al, 2013, Besoain et al, 2013). To the best of our knowledge, this is the first report of N. australe associated with walnut branch dieback in Chile.

2.
Plant Dis ; 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34096773

ABSTRACT

During the last two seasons, an unusual fruit rot was observed in four orchards of sweet Japanese plum (Prunus salicina) cultivars located in the Chilean Central Valley (30°00'S, 70°42'W). The incidence was 5% in Black Majesty, 4% in Red Lyon, and 6% in Sweet Mary cultivars in 2020. Fruits in the field showed a firm, dehydrated, and slightly sunken rot on the blossom end, along with rough and irregular epidermis in the affected area. Internally, the fruit flesh appeared light to dark-brown or olive-green. Symptomatic fruits (n=119) were superficially disinfected (75% ethanol) and, pieces of the pericarp (3 x 3 mm) were removed and placed on potato dextrose agar (PDA). Isolates of Alternaria spp. were obtained and 9 of these were selected for identification. Colonies were dark olive to gray-brown with white margins, small, catenulate and muriform conidia, produced in single or branched conidiophores. Isolates produced brown to golden-brown, ovoid, ellipsoidal to obclavate conidia with dimensions of 19.7 to 26.7 × 10.0 to 11.9 µm with two to four transverse and zero to three longitudinal septa on 0.05× PDA (Pryor and Michailides 2002) after 7 d at 20°C under 10/14 h light/dark cycles. A molecular analysis was performed by sequencing the nuclear genes RNA polymerase II subunit (RPB2), plasma membrane ATPase (ATP), and the calmodulin (Cal) gene using primers RPB2-5F2/fRPB2-7cR, ATPDF1/ATPDR1, and CALDF1/CALDR1, respectively (Lawrence et al. 2013; Woudenberg et al. 2013). A BLAST search revealed the presence of Alternaria spp. with a 99% to 100% identity with the reference sequences of A. alternata (JQ905182, JQ671874, JQ646208), A. arborescens (JQ646487, JQ671880, JQ646214), and A. tenuissima (JQ811961, JQ811989, JQ646209). Maximum parsimony phylogenetic analysis confirmed the identifications. Sequences were deposited in GenBank as numbers MW514249 to MW514257, MT872324 to MT872332, and MT872314 to MT872322 for RPB2, ATP, and Cal sequences, respectively. All these Alternaria isolates were deposited in the Colección Chilena de Recursos Genéticos Microbianos - INIA, Chillán Chile (RGM3069 to RGM3077). Pathogenicity of A. alternata (n=4), A. arborescens (n=3) and, A. tenuissima (n=2) was tested in Red Lyon plum fruits. Plums were disinfected in 1% sodium hypochlorite for 2 min, rinsed in sterile distilled water for 1 min and dried on absorbent towels in a laminar flow hood. Then, the plums were wounded on the blossom end with a sterile needle (1 x 0.5 mm), inoculated with 10 µl of a conidial suspension (106 conidia/ml), wrapped with Parafilm and maintained in a humid chamber (>95% relative humidity). An equal number of fruits wounded and inoculated with sterile water were used as a control. After 7 days at 20°C, all inoculated fruits developed a dark-brown firm rot with lesion lengths of 24.4 (±3.0) mm, 19.6 (±0.7) mm, and 16.8 (±2.4) mm for A. alternata, A. arborescens and A. tenuissima, respectively. A. alternata was the most aggressive species (P < 0.001). Control fruits remained asymptomatic. Koch's postulates were fulfilled after the re-isolating the causal agent from the border of the lesions. Leaf spots and fruit rots caused by Alternaria isolates have been reported in stone fruits, including plums (Kim et al. 2005; Long et al. 2021; Moosa et al., 2019; Yang et al. 2014). To our knowledge, this is the first report of A. alternata, A. arborescens, and A. tenuissima associated with fruit rot in sweet Japanese plum cultivars in the field, in Chile.

3.
Front Plant Sci ; 12: 791030, 2021.
Article in English | MEDLINE | ID: mdl-35003180

ABSTRACT

The woody nature of grapevine (Vitis vinifera L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps to gene editing in the vine. The inclusion of geminivirus-based replicons in regular T-DNA vectors can enhance the expression of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) elements, thus enabling the use of these multicellular explants as starting materials. In this study, we used Bean yellow dwarf virus (BeYDV)-derived replicon vectors to express the key components of CRISPR/Cas9 system in vivo and evaluate their editing capability in individuals derived from Agrobacterium-mediated gene transfer experiments of 'Thompson Seedless' somatic embryos. Preliminary assays using a BeYDV-derived vector for green fluorescent protein reporter gene expression demonstrated marker visualization in embryos for up to 33 days post-infiltration. A universal BeYDV-based vector (pGMV-U) was assembled to produce all CRISPR/Cas9 components with up to four independent guide RNA (gRNA) expression cassettes. With a focus on fungal tolerance, we used gRNA pairs to address considerably large deletions of putative grape susceptibility genes, including AUXIN INDUCED IN ROOT CULTURE 12 (VviAIR12), SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER 4 (VviSWEET4), LESION INITIATION 2 (VviLIN2), and DIMERIZATION PARTNER-E2F-LIKE 1 (VviDEL1). The editing functionality of gRNA pairs in pGMV-U was evaluated by grapevine leaf agroinfiltration assays, thus enabling longer-term embryo transformations. These experiments allowed for the establishment of greenhouse individuals exhibiting a double-cut edited status for all targeted genes under different allele-editing conditions. After approximately 18 months, the edited grapevine plants were preliminary evaluated regarding its resistance to Erysiphe necator and Botrytis cinerea. Assays have shown that a transgene-free VviDEL1 double-cut edited line exhibits over 90% reduction in symptoms triggered by powdery mildew infection. These results point to the use of geminivirus-based replicons for gene editing in grapevine and other relevant fruit species.

4.
Plant Dis ; 105(8): 2129-2140, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33258430

ABSTRACT

Gray mold is the primary postharvest disease of 'Hayward' kiwifruit (Actinidia deliciosa) in Chile, with a prevalence of 33.1% in 2016 and 7.1% in 2017. Gray mold develops during postharvest storage, which is characterized by a soft, light to brown watery decay that is caused by Botrytis cinerea and B. prunorum. However, there is no information on the role of B. prunorum during the development and storage of kiwifruit in Chile. For this purpose, asymptomatic flowers and receptacles were collected throughout fruit development and harvest from five orchards over two seasons in the Central Valley of Chile. Additionally, diseased kiwifruits were selected after storage for 100 days at 0°C and 2 days at 20°C. Colonies of Botrytis sp. with high and low conidial production were consistently obtained from apparently healthy petals, sepals, receptacles, and styles and diseased kiwifruit. Morphological and phylogenetic analysis of three partial gene sequences encoding glyceraldehyde-3-phosphate dehydrogenase, heat shock protein 60, and DNA-dependent RNA polymerase subunit II were able to identify and separate B. cinerea and B. prunorum species. Consistently, B. cinerea was predominantly isolated from all floral parts and fruit in apparently healthy tissue and diseased kiwifruit. During full bloom, the highest colonization by B. cinerea and B. prunorum was obtained from petals, followed by sepals. In storage, both Botrytis species were isolated from the diseased fruit (n = 644), of which 6.8% (n = 44) were identified as B. prunorum. All Botrytis isolates grew from 0°C to 30°C in vitro and were pathogenic on kiwifruit leaves and fruit. Notably, B. cinerea isolates were always more virulent than B. prunorum isolates. This study confirms the presence of B. cinerea and B. prunorum colonizing apparently healthy flowers and floral parts in fruit and causing gray mold during kiwifruit storage in Chile. Therefore, B. prunorum plays a secondary role in the epidemiology of gray mold developing in kiwifruit during cold storage.


Subject(s)
Actinidia , Botrytis , Botrytis/genetics , Fruit , Phylogeny , Plant Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...