Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Acc Chem Res ; 53(12): 2869-2878, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33186005

ABSTRACT

Core principles of chemistry are ubiquitously invoked to shed light on the nature of molecular level interactions in nanoconfined fluids, which play a pivotal role in a wide range of processes in geochemistry, biology, and engineering. A detailed understanding of the physicochemical processes involved in the flow, structural transitions, and freezing or melting behavior of fluids confined within nanometer-sized pores of solid materials is thus of enormous importance for both basic research and technological applications.This Account provides a perspective on new insights into the thermodynamic and kinetic transitions of nanoconfined fluids in their stable and metastable forms. After briefly introducing the unique properties of mesoporous silicas from the SBA, MCM, and FDU families that serve as the confinement matrices, combining highly ordered single and bimodal mesopore architectures with tunable pore sizes in the ∼2-15 nm range and narrow size distributions, recent studies on melting/freezing behavior of water confined in these host matrices are reviewed. While differential scanning calorimetry (DSC) reveals a linear relationship between melting point depression and pore size (independent of the pore shape), as predicted by the Gibbs-Thomson relation, variable temperature 2H wide-line nuclear magnetic resonance (NMR) spectroscopy studies confirm the core-shell model of water and give evidence for a layer-by-layer freezing mechanism, which gives rise to an apparent fragile-to-strong transition in the solidification dynamics.In contrast to the freezing/melting behavior of water, the effect of nanoconfinement on the glass transition of supercooled liquids is nonuniversal and the glass transition temperature Tg can either increase or decrease with the dimensionality and extent of confinement. This nonuniversal behavior is exemplified by the two glass-forming molecular liquids, glycerol and ortho-terphenyl (OTP). While glycerol shows an increase in Tg and a pronounced slowdown of the rotational dynamics of the constituent molecules due to a change in the molecular packing between the bulk and the confined liquid, OTP displays a linear and confining-media-dependent depression of Tg with increased confinement that is strongly influenced by the pore-liquid interface characteristics.This Account concludes with a focus on recent experimental evidence of extreme spatial and dynamical heterogeneity in both freezing and glass transition processes. This discovery was enabled by the unique mesoporous structures of SBA-16 and FDU-5, possessing bimodal architectures with two interconnected pore types of different size and shape (spherical and cylindrical). For the very first time, two melting points for water and two glass transitions for supercooled OTP, corresponding to a specific pore type, were observed. Collectively, these observations strongly suggest a close mechanistic connection between the local fluctuations in the structure and dynamics of nanoconfined liquids. While the findings reviewed in this Account provide new insights into thermodynamic and kinetic transitions of fluids, there remain many unanswered questions regarding the effects of nanoconfinement on the fundamental properties of fluids, which offer exciting future opportunities in chemical research.

2.
Sci Rep ; 10(1): 5327, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32210285

ABSTRACT

Nanoconfined water plays a pivotal role in a vast number of fields ranging from biological and materials sciences to catalysis, nanofluidics and geochemistry. Here, we report the freezing and melting behavior of water (D2O) nanoconfined in architected silica-based matrices including Vycor glass and mesoporous silica SBA-15 and SBA-16 with pore diameters ranging between 4-15 nm, which are investigated using differential scanning calorimetry and 2H nuclear magnetic resonance spectroscopy. The results provide compelling evidence that the extreme dynamical heterogeneity of water molecules is preserved over distances as small as a few angstroms. Solidification progresses in a layer-by-layer fashion with a coexistence of liquid-like and solid-like dynamical fraction at all temperatures during the transition process. The previously reported fragile-to-strong dynamic transition in nanoconfined water is argued to be a direct consequence of the layer-by-layer solidification.

3.
Colloids Surf B Biointerfaces ; 186: 110680, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31835183

ABSTRACT

The integral membrane protein, bacteriorhodopsin (BR) was encapsulated in sol-gel derived porous silica gel monoliths in native purple membrane (BR-PM) and synthetic lipid nanodisc (BR nanodisc) environments. BR nanodiscs were synthesized by solubilizing purple membrane in discoidal phospholipid bilayer stabilized by amphipathic Styrene-Maleic Acid (SMA) copolymer. UV-vis absorbance spectroscopy and dynamic-light scattering indicated the formation of BR monomers solubilized in lipid nanodiscs 10.2 ± 0.7 nm in average diameter. Fluorescence and absorbance spectroscopic techniques were utilized to probe conformational, environmental, and rotational changes associated with the tryptophan residues and the covalently-bound retinal moiety of BR upon entrapment in the silica matrix. We show that the immobilized BR in both membrane environments retained its bound retinal cofactor and the ability of the cofactor to undergo conformational changes upon light illumination necessary for BR's activity as a proton transporter. For purple membrane fragments, the results indicated that the local pH in the pores around BR after encapsulation was important for its stability at temperatures higher than 50 °C. Under the same buffering conditions, retinal was released from silica-encapsulated BR-PM and BR nanodiscs beginning at 80 °C (without a conformational change) and 50 °C (with a conformational change), respectively, reflecting differences in protein-protein (trimeric vs. monomeric) and protein-lipid interactions.


Subject(s)
Bacteriorhodopsins/chemistry , Lipids/chemistry , Nanostructures/chemistry , Purple Membrane/chemistry , Silicon Dioxide/chemistry , Gels/chemistry , Particle Size , Surface Properties
4.
Langmuir ; 34(25): 7488-7496, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29874091

ABSTRACT

We study bacteriorhodopsin (BR) in its native purple membrane encapsulated within amorphous titanium dioxide, or titania, gels and in the presence of titania sol particles to explore this system for hydrogen production. Förster resonance energy transfer between BR and titanium dioxide sol particles was used to conclude that there is nanometer-scale proximity of bacteriorhodopsin to the titanium dioxide. The detection of BR-titania sol aggregates by fluorescence anisotropy and particle sizing indicated the affinity amorphous titania has for BR without the use of additional cross-linkers. UV-vis spectroscopy of BR-titania gels shows that methanol addition did not denature BR at a 25 mM concentration presence as a sacrificial electron donor. Additionally, confinement of BR in the gels significantly limited protein denaturation at higher concentration of added methanol or ethanol. Subsequently, titania gels fabricated through the sol-gel process using a titanium ethoxide precursor, water, and the addition of 25 mM methanol were used to encapsulate BR and a platinum reduction catalyst for the production of hydrogen gas under white light irradiation. The inclusion of 5 µM bacteriorhodopsin resulted in a hydrogen production rate of about 3.8 µmol hydrogen mL-1 h-1, an increase of 52% compared to gels containing no protein. Electron transfer and proton pumping by BR in close proximity to the titania gel surface are feasible explanations for the enhanced production of hydrogen without the need to cross-link BR to the titania gel. This work sets the stage for further developments of amorphous, rather than crystalline, titania-encapsulated bacteriorhodopsin for solar-driven hydrogen production through water splitting.

5.
ACS Appl Mater Interfaces ; 9(41): 35664-35672, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28948761

ABSTRACT

Titanium dioxide gel monoliths were synthesized using an organic precursor and 0-30 vol % ethanol in water. The visible-light-activated proton pump, bacteriorhodopsin, in its native purple membrane form, was successfully encapsulated within the titanium dioxide gels. Absorption spectra showed that the folded functional state of the protein remained intact within gels made with 0 and 15 vol % ethanol and retained the ability to make reversible conformational changes associated with the photocycle within the gel made with 0 vol % ethanol. The photocatalytic activity of gels made with no ethanol was significantly detectable and gels made with 0-30 vol % ethanol were comparable to commercial crystalline nanoparticles in similar solution conditions when irradiated with UV light. Our results show that sol-gel-derived photocatalytic titanium dioxide can be made biocompatible for a membrane-associated protein by minimizing the amount of ethanol and maximizing the amount of water in the synthesis procedure. The entrapment of the membrane protein, bacteriorhodopsin, in sol-gel-derived titanium dioxide provides the first step in future explorations of this bionanocomposite for visible light photocatalysis, including hydrogen production.


Subject(s)
Titanium/chemistry , Catalysis , Gels , Light , Phase Transition
6.
J Phys Chem B ; 120(43): 11180-11190, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27723342

ABSTRACT

We use fluorescence microscopy to examine the dynamics of the crowding-induced mixing transition of liquid ordered (Lo)-liquid disordered (Ld) phase separated lipid bilayers when the following particles of increasing size bind to either the Lo or Ld phase: Ubiquitin, green fluorescent protein (GFP), and nanolipoprotein particles (NLPs) of two diameters. These proteinaceous particles contained histidine-tags, which were phase targeted by binding to iminodiacetic acid (IDA) head groups, via a Cu2+ chelating mechanism, of lipids that specifically partition into either the Lo phase or Ld phase. The degree of steric pressure was controlled by varying the size of the bound particle (10-240 kDa) and the amount of binding sites present (i.e., DPIDA concentrations of 9 and 12 mol%) in the supported lipid multibilayer platform used here. We develop a mass transfer-based diffusional model to analyze the observed Lo phase domain dissolution that, along with visual observations and activation energy calculations, provides insight into the sequence of events in crowding-induced mixing. Our results suggest that the degree of steric pressure and target phase influence not only the efficacy of steric-pressure induced mixing, but the rate and controlling mechanism for which it occurs.


Subject(s)
Lipid Bilayers/isolation & purification , Lipoproteins/chemistry , Molecular Dynamics Simulation , Nanoparticles/chemistry , Ubiquitin/chemistry , Lipid Bilayers/chemistry , Microscopy, Fluorescence , Particle Size
7.
Langmuir ; 32(18): 4688-97, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27096947

ABSTRACT

In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu(2+), chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domains of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10(-22) to 1.5 × 10(-20) J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. The mixing process was reversible, with Lo domains reappearing after addition of EDTA for NLP removal.


Subject(s)
Lipid Bilayers/chemistry , Pressure , Thermodynamics
8.
ACS Appl Mater Interfaces ; 7(16): 8640-9, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25849085

ABSTRACT

The changes in the orientation and conformation of three different membrane scaffold proteins (MSPs) upon entrapment in sol-gel-derived mesoporous silica monoliths were investigated. MSPs were examined in either a lipid-free or a lipid-bound conformation, where the proteins were associated with lipids to form nanolipoprotein particles (NLPs). NLPs are water-soluble, disk-shaped patches of a lipid bilayer that have amphiphilic MSPs shielding the hydrophobic lipid tails. The NLPs in this work had an average thickness of 5 nm and diameters of 9.2, 9.7, and 14.8 nm. We have previously demonstrated that NLPs are more suitable lipid-based structures for silica gel entrapment than liposomes because of their size compatibility with the mesoporous network (2-50 nm) and minimally altered structure after encapsulation. Here we further elaborate on that work by using a variety of spectroscopic techniques to elucidate whether or not different MSPs maintain their protein-lipid interactions after encapsulation. Fluorescence spectroscopy and quenching of the tryptophan residues with acrylamide, 5-DOXYL-stearic acid, and 16-DOXYL-stearic acid were used to determine the MSP orientation. We also utilized fluorescence anisotropy of tryptophans to measure the relative size of the NLPs and MSP aggregates after entrapment. Finally, circular dichroism spectroscopy was used to examine the secondary structure of the MSPs. Our results showed that, after entrapment, all of the lipid-bound MSPs maintained orientations that were minimally changed and indicative of association with lipids in NLPs. The tryptophan residues appeared to remain buried within the hydrophobic core of the lipid tails in the NLPs and appropriately spaced from the bilayer center. Also, after entrapment, lipid-bound MSPs maintained a high degree of α-helical content, a secondary structure associated with protein-lipid interactions. These findings demonstrate that NLPs are capable of serving as viable hosts for functional integral membrane proteins in the synthesis of sol-gel-derived bioinorganic hybrid nanomaterials.


Subject(s)
Membrane Proteins/chemistry , Silica Gel/chemistry , Acrylamide/chemistry , Amino Acid Sequence , Anisotropy , Circular Dichroism , Lipoproteins/chemistry , Molecular Sequence Data , Nanoparticles/chemistry , Porosity , Solutions , Spectrometry, Fluorescence , Tryptophan/chemistry
9.
Nanomedicine ; 11(6): 1377-85, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25819886

ABSTRACT

A highly versatile nanoplatform that couples mesoporous silica nanoparticles (MSNs) with an aerosol technology to achieve direct nanoscale delivery to the respiratory tract is described. This novel method can deposit MSN nanoparticles throughout the entire respiratory tract, including nasal, tracheobronchial and pulmonary regions using a water-based aerosol. This delivery method was successfully tested in mice by inhalation. The MSN nanoparticles used have the potential for carrying and delivering therapeutic agents to highly specific target sites of the respiratory tract. The approach provides a critical foundation for developing therapeutic treatment protocols for a wide range of diseases where aerosol delivery to the respiratory system would be desirable. FROM THE CLINICAL EDITOR: Delivery of drugs via the respiratory tract is an attractive route of administration. In this article, the authors described the design of mesoporous silica nanoparticles which could act as carriers for drugs. The underlying efficacy was successfully tested in a mouse model. This drug-carrier inhalation nanotechnology should potentially be useful in human clinical setting in the future.


Subject(s)
Aerosols , Nanoparticles , Silicon Dioxide/administration & dosage , Administration, Inhalation , Animals , Bronchoalveolar Lavage Fluid , Lung Diseases/therapy , Male , Mice , Microscopy, Electron, Transmission , Silicon Dioxide/therapeutic use
10.
Langmuir ; 30(32): 9780-8, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25062385

ABSTRACT

The entrapment of nanolipoprotein particles (NLPs) and liposomes in transparent, nanoporous silica gel derived from the precursor tetramethylorthosilicate was investigated. NLPs are discoidal patches of lipid bilayer that are belted by amphiphilic scaffold proteins and have an average thickness of 5 nm. The NLPs in this work had a diameter of roughly 15 nm and utilized membrane scaffold protein (MSP), a genetically altered variant of apolipoprotein A-I. Liposomes have previously been examined inside of silica sol-gels and have been shown to exhibit instability. This is attributed to their size (∼150 nm) and altered structure and constrained lipid dynamics upon entrapment within the nanometer-scale pores (5-50 nm) of the silica gel. By contrast, the dimensional match of NLPs with the intrinsic pore sizes of silica gel opens the possibility for their entrapment without disruption. Here we demonstrate that NLPs are more compatible with the nanometer-scale size of the porous environment by analysis of lipid phase behavior via fluorescence anisotropy and analysis of scaffold protein secondary structure via circular dichroism spectroscopy. Our results showed that the lipid phase behavior of NLPs entrapped inside of silica gel display closer resemblance to its solution behavior, more so than liposomes, and that the MSP in the NLPs maintain the high degree of α-helix secondary structure associated with functional protein-lipid interactions after entrapment. We also examined the effects of residual methanol on lipid phase behavior and the size of NLPs and found that it exerts different influences in solution and in silica gel; unlike in free solution, silica entrapment may be inhibiting NLP size increase and/or aggregation. These findings set precedence for a bioinorganic hybrid nanomaterial that could incorporate functional integral membrane proteins.


Subject(s)
Nanoparticles/chemistry , Silica Gel/chemistry , Apolipoprotein A-I/chemistry , Nanostructures/chemistry , Polymethyl Methacrylate/chemistry
11.
Acta Biomater ; 7(1): 380-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20674809

ABSTRACT

Lipid bilayers supported by nanoporous xerogel materials are being explored as models for cell membranes. In order to better understand and characterize the nature of the surface-bilayer interactions, several oxide and organic nanoporous xerogel films (alumina, titania, iron oxide, phloroglucinol-formaldehyde, resorcinol-formaldehyde and cellulose acetate) have been investigated as a scaffold for vesicle-fused 1,2-dioleoyl-glycero-3-phosphocholine (DOPC) lipid bilayer formation and mobility. The surface topography of the different substrates was analyzed using contact and tapping-mode atomic force microscopy and the surface energy of the substrates was determined using contact angle goniometry. Lipid bilayer formation has been observed with fluorescence microscopy and lateral lipid diffusion coefficients have been determined using fluorescence recovery after photobleaching. Titania xerogel films were found to be a robust and convenient support for formation of a two-phase DOPC/1,2-distearoyl-glycero-3-phosphocholine bilayer and domains were observed with this system. It was found that the cellulose acetate xerogel film support produced the slowest lipid lateral diffusion.


Subject(s)
Gels/chemistry , Lipid Bilayers/chemical synthesis , Nanopores , Organic Chemicals/chemistry , Oxides/chemistry , Phospholipids/chemical synthesis , Air , Cellulose/analogs & derivatives , Cellulose/chemistry , Diffusion , Fluorescence Recovery After Photobleaching , Microscopy, Atomic Force , Particle Size , Thermodynamics , Water/chemistry
12.
Colloids Surf B Biointerfaces ; 82(2): 647-50, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21055909

ABSTRACT

Lipid bilayers supported by porous biomaterials are being explored as models for cell membranes. Hydroxyapatite is a relevant material currently being used extensively for biomedical applications. In this study, hydroxyapatite films produced via a sol-gel chemistry route have been characterized and explored as a scaffolding material for lipid membranes. The hydroxyapatite has been characterized using XRD, SEM, and AFM, followed by vesicle-fusion of lipids characterized by fluorescence microscopy and fluorescence recovery after photobleaching (FRAP) to determine the diffusion coefficient of this system. The HA films produced in this work were found to produce slow lateral diffusion and, in the two-phase lipid systems, some domains were observed. The low lateral diffusion coefficients were believed to be a result of the large undulations present on the hydroxyapatite film surface.


Subject(s)
Durapatite/chemistry , Lipid Bilayers/chemistry , Phase Transition , Phospholipids/chemistry , Diffusion , Fluorescence Recovery After Photobleaching/methods , Gels , Light , Lipids/chemistry , Microscopy, Atomic Force/methods , Microscopy, Electron, Scanning/methods , X-Ray Diffraction
13.
Biochim Biophys Acta ; 1798(4): 719-29, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19766590

ABSTRACT

The objective of this paper was to review our recent investigations of silica xerogel and aerogel-supported lipid bilayers. These systems provide a format to observe relationships between substrate curvature and supported lipid bilayer formation, lipid dynamics, and lipid mixtures phase behavior and partitioning. Sensitive surface techniques such as quartz crystal microbalance and atomic force microscopy are readily applied to these systems. To inform current and future investigations, we review the experimental literature involving the impact of curvature on lipid dynamics, lipid and phase-separated lipid domain localization, and membrane-substrate conformations and we review our molecular dynamics simulations of supported lipid bilayers with the atomistic and molecular information they provide.


Subject(s)
Gels/chemistry , Lipid Bilayers/chemistry , Membrane Fluidity , Silicon Dioxide/chemistry , Membrane Microdomains/chemistry , Membrane Microdomains/ultrastructure , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Models, Molecular , Molecular Dynamics Simulation
14.
Langmuir ; 25(6): 3713-7, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19708250

ABSTRACT

Lipid bilayers supported by substrates with nanometer-scale surface corrugations hold interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g., porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, lateral diffusion coefficient, and lipid density in comparison to mica-supported lipid bilayers were characterized by atomic force microscopy, fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the silica xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface in the fluid regions. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of fluid lipids on silica xerogel (approximately 1.7 microm2/s) is lower than on mica (approximately 3.9 microm2/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on silica xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase lipid bilayer that penetrates approximately midway into the first layer of approximately 50 nm silica xerogel beads.


Subject(s)
Gels/chemistry , Lipid Bilayers/chemistry , Silicon Dioxide/chemistry , Diffusion , Fluorescence Recovery After Photobleaching , Lipids/chemistry , Materials Testing , Membrane Fluidity , Membranes, Artificial , Microscopy, Atomic Force/methods , Microscopy, Fluorescence/methods , Nanoparticles/chemistry , Spectrometry, Fluorescence/methods , Surface Properties
15.
Phys Rev Lett ; 97(21): 215503, 2006 Nov 24.
Article in English | MEDLINE | ID: mdl-17155748

ABSTRACT

In combination of direct phase retrieval of coherent x-ray diffraction patterns with a novel tomographic reconstruction algorithm, we, for the first time, carried out quantitative 3D imaging of a heat-treated GaN particle with each voxel corresponding to 17 x 17 x 17 nm3. We observed the platelet structure of GaN and the formation of small islands on the surface of the platelets, and successfully captured the internal GaN-Ga2O3 core shell structure in three dimensions. This work opens the door for nondestructive and quantitative imaging of 3D morphology and 3D internal structure of a wide range of materials at the nanometer scale resolution that are amorphous or possess only short-range atomic organization.

16.
J Phys Chem B ; 110(36): 18058-63, 2006 Sep 14.
Article in English | MEDLINE | ID: mdl-16956298

ABSTRACT

Knowledge of the dynamical changes in molecular configurations in various amino acid structures over a wide range of time scales is important since such changes may influence the structural transformations and the diverse biological functionalities of proteins. Using the temperature dependence of the rotating-frame NMR spin-lattice relaxation times T(1rho) of protons as a probe, we have investigated the low-frequency (approximately 60-100 kHz) dynamics in the crystal structures of L-, D-, and DL- alanine (C(12)H(28)O(8)N(4)) polymorphs. The proton relaxation times T(1rho) were obtained from (13)C <-- (1)H and (15)N <-- (1)H cross-polarization magic-angle-spinning NMR experiments over a temperature range of 192-342 K. The data reveal that the time scales of these low-frequency dynamical processes are distinctly different from the localized, high-frequency rotational motion of methyl and amine groups. The strongly asymmetric T(1rho) versus temperature curves and the subtle dynamical differences between the DL-alanine and the L- and d-enantiomorphs indicate that these low-frequency processes are cooperative in nature and are sensitive to molecular packing.


Subject(s)
Alanine/chemistry , Magnetic Resonance Spectroscopy/methods , Carbon Isotopes , Crystallization , Molecular Conformation , Motion , Nitrogen Isotopes , Temperature
17.
Phys Rev Lett ; 95(8): 085503, 2005 Aug 19.
Article in English | MEDLINE | ID: mdl-16196870

ABSTRACT

The missing data problem, i.e., the intensities at the center of diffraction patterns cannot be experimentally measured, is currently a major limitation for wider applications of coherent diffraction microscopy. We report here that, when the missing data are confined within the centrospeckle, the missing data problem can be reliably solved. With an improved instrument, we recorded 27 oversampled diffraction patterns at various orientations from a GaN quantum dot nanoparticle and performed quantitative image reconstruction from the diffraction intensities alone. This work in principle clears the way for single-shot imaging experiments using x-ray free electron lasers.

18.
Langmuir ; 20(17): 7232-9, 2004 Aug 17.
Article in English | MEDLINE | ID: mdl-15301510

ABSTRACT

Planar supported lipid bilayers have attracted immense interest for their properties as model cell membranes and for potential applications in biosensors and lab-on-a-chip devices. We report the formation of fluid planar biomembranes on hydrophilic silica aerogels and xerogels. Scanning electron microscopy results showed the presence of interconnected silica beads of approximately 10-25 nm in diameter and nanoscale open pores of comparable size for the aerogel and grain size of approximately 36-104 nm with approximately 9-24 nm diameter pores for the xerogel. When the aerogel/xerogel was prehydrated and then allowed to incubate in l-alpha-phosphatidylcholine (egg yolk PC) unilamellar vesicle (approximately 30 nm diameter) solution, lipid bilayers were formed due to the favorable interaction of vesicles with the hydroxyl-abundant silica surface. Lateral mobility of labeled lipid N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine was retained in the membranes. A diffusion coefficient of 0.61 +/- 0.22 microm(2)/s was determined from fluorescence recovery after photobleaching analysis for membranes on aerogels, compared to 2.46 +/- 0.35 microm(2)/s on flat glass. Quartz crystal microbalance-dissipation was utilized to monitor the kinetics of the irreversible adsorption and fusion of vesicles into bilayers on xerogel thin films.


Subject(s)
Membrane Fluidity , Membranes, Artificial , Nanostructures/chemistry , Silicon Dioxide/chemistry , Crystallization , Gels/chemistry , Lipid Bilayers/chemistry , Microscopy, Electron, Scanning/methods , Models, Chemical , Particle Size , Porosity , Sensitivity and Specificity , Surface Properties , Time Factors
19.
Phys Rev Lett ; 91(20): 205501, 2003 Nov 14.
Article in English | MEDLINE | ID: mdl-14683372

ABSTRACT

Molecular dynamics simulations of fused silica at shock pressures reproduce the experimental equation of state of this material and explain its characteristic shape. We demonstrate that shock waves modify the medium-range order of this amorphous system, producing changes that are only clearly revealed by its ring size distribution. The ring size distribution remains practically unchanged during elastic compression but varies continuously after the transition to the plastic regime.

20.
Biophys J ; 82(1 Pt 1): 464-73, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11751333

ABSTRACT

Antifreeze glycoproteins from the Greenland cod Boreogadus saida were dimethylated at the N-terminus (m*AFGP) and their dynamics and conformational properties were studied in the presence of ice using (13)C-NMR and FTIR spectroscopy. (13)C-NMR experiments of m*AFGP in D(2)O, in H(2)O, and of freeze-dried m*AFGP were performed as a function of temperature. Dynamic parameters ((1)H T(1 rho) and T(CH)) obtained by varying the contact time revealed notable differences in the motional properties of AFGP between the different states. AFGP/ice dynamics was dominated by fast-scale motions (nanosecond to picosecond time scale), suggesting that the relaxation is markedly affected by the protein hydration. The data suggest that AFGP adopts a similar type of three-dimensional fold both in the presence of ice and in the freeze-dried state. FTIR studies of the amide I band did not show a single prevailing secondary structure in the frozen state. The high number of conformers suggests a high flexibility, and possibly reflects the necessity to expose more ice-binding groups. The data suggest that the effect of hydration on the local mobility of AFGP and the lack of significant change in the backbone conformation in the frozen state may play a role in inhibiting the ice crystal growth.


Subject(s)
Antifreeze Proteins/chemistry , Ice , Animals , Fishes , Magnetic Resonance Spectroscopy , Pressure , Protein Conformation , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...