Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 374(2064): 20150046, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26903096

ABSTRACT

Previous research effort towards the determination of the Boltzmann constant has significantly improved the supporting theory and the experimental practice of several primary thermometry methods based on the measurement of a thermodynamic property of a macroscopic system at the temperature of the triple point of water. Presently, experiments are under way to demonstrate their accuracy in the determination of the thermodynamic temperature T over an extended range spanning the interval between a few kelvin and the copper freezing point (1358 K). We discuss how these activities will improve the link between thermodynamic temperature and the temperature as measured using the International Temperature Scale of 1990 (ITS-90) and report some preliminary results obtained by dielectric constant gas thermometry and acoustic gas thermometry. We also provide information on the status of other primary methods, such as Doppler broadening thermometry, Johnson noise thermometry and refractive index gas thermometry. Finally, we briefly consider the implications of these advancements for the dissemination of calibrated temperature standards.

2.
Philos Trans A Math Phys Eng Sci ; 369(1953): 4014-27, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21930563

ABSTRACT

The paper reports a new experiment to determine the value of the Boltzmann constant, k(B)=1.3806477(17)×10(-23) J K(-1), with a relative standard uncertainty of 1.2 parts in 10(6). k(B) was deduced from measurements of the velocity of sound in argon, inside a closed quasi-spherical cavity at a temperature of the triple point of water. The shape of the cavity was achieved using an extremely accurate diamond turning process. The traceability of temperature measurements was ensured at the highest level of accuracy. The volume of the resonator was calculated from measurements of the resonance frequencies of microwave modes. The molar mass of the gas was determined by chemical and isotopic composition measurements with a mass spectrometer. Within combined uncertainties, our new value of k(B) is consistent with the 2006 Committee on Data for Science and Technology (CODATA) value: (k(B)(new)/k(B_CODATA)-1)=-1.96×10(-6), where the relative uncertainties are u(r)(k(B)(new))=1.2×10(-6) and u(r)(k(B_CODATA))=1.7×10(-6). The new relative uncertainty approaches the target value of 1×10(-6) set by the Consultative Committee on Thermometry as a precondition for redefining the unit of the thermodynamic temperature, the kelvin.

SELECTION OF CITATIONS
SEARCH DETAIL
...