Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 7(2)2018 Apr 17.
Article in English | MEDLINE | ID: mdl-29673222

ABSTRACT

Photobioelectrochemical systems are an emerging possibility for renewable energy. By exploiting photosynthesis, they transform the energy of light into electricity. This study evaluates a simple, scalable bioelectrochemical system built from recycled plastic bottles, equipped with an anode made from recycled aluminum, and operated with the green alga Chlorella sorokiniana. We tested whether such a system, referred to as a bio-bottle-voltaic (BBV) device, could operate outdoors for a prolonged time period of 35 days. Electrochemical characterisation was conducted by measuring the drop in potential between the anode and the cathode, and this value was used to calculate the rate of charge accumulation. The BBV systems were initially able to deliver ~500 mC·bottle−1·day−1, which increased throughout the experimental run to a maximum of ~2000 mC·bottle−1·day−1. The electrical output was consistently and significantly higher than that of the abiotic BBV system operated without algal cells (~100 mC·bottle−1·day−1). The analysis of the rate of algal biomass accumulation supported the hypothesis that harvesting a proportion of electrons from the algal cells does not significantly perturb the rate of algal growth. Our finding demonstrates that bioelectrochemical systems can be built using recycled components. Prototypes of these systems have been displayed in public events; they could serve as educational toolkits in schools and could also offer a solution for powering low-energy devices off-grid.

2.
Ind Biotechnol (New Rochelle N Y) ; 10(3): 184-190, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-25729339

ABSTRACT

Although no species lives in isolation in nature, efforts to grow organisms for use in biotechnology have generally focused on a single-species approach, particularly where a product is required at high purity. In such scenarios, preventing the establishment of contaminants requires considerable effort that is economically justified. However, for some applications in biotechnology where the focus is on lower-margin biofuel production, axenic culture is not necessary, provided yields of the desired strain are unaffected by contaminants. In this article, we review what is known about interspecific interactions of natural algal communities, the dynamics of which are likely to parallel contamination in industrial systems. Furthermore, we discuss the opportunities to improve both yields and the stability of cultures by growing algae in multi-species consortia.

SELECTION OF CITATIONS
SEARCH DETAIL
...