Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 194(4): 2564-2579, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38217868

ABSTRACT

The water uptake capacity of a root system is determined by its architecture and hydraulic properties, which together shape the root hydraulic architecture. Here, we investigated root responses to water deficit (WD) in seedlings of a maize (Zea mays) hybrid line (B73H) grown in hydroponic conditions, taking into account the primary root (PR), the seminal roots (SR), and their respective lateral roots. WD was induced by various polyethylene glycol concentrations and resulted in dose-dependent inhibitions of axial and lateral root growth, lateral root formation, and hydraulic conductivity (Lpr), with slightly distinct sensitivities to WD between PR and SR. Inhibition of Lpr by WD showed a half-time of 5 to 6 min and was fully (SR) or partially (PR) reversible within 40 min. In the two root types, WD resulted in reduced aquaporin expression and activity, as monitored by mRNA abundance of 13 plasma membrane intrinsic protein (ZmPIP) isoforms and inhibition of Lpr by sodium azide, respectively. An enhanced suberization/lignification of the epi- and exodermis was observed under WD in axial roots and in lateral roots of the PR but not in those of SR. Inverse modeling revealed a steep increase in axial conductance in root tips of PR and SR grown under WD that may be due to the decreased growth rate of axial roots in these conditions. Overall, our work reveals that these root types show quantitative differences in their anatomical, architectural, and hydraulic responses to WD, in terms of sensitivity, amplitude and reversibility. This distinct functionalization may contribute to integrative acclimation responses of whole root systems to soil WD.


Subject(s)
Water , Zea mays , Water/metabolism , Zea mays/metabolism , Plant Roots/metabolism , Seedlings/genetics , Meristem/metabolism
2.
Plant Physiol ; 192(3): 2404-2418, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37052178

ABSTRACT

Plant water uptake is determined by the root system architecture and its hydraulic capacity, which together define the root hydraulic architecture. The current research aims at understanding the water uptake capacities of maize (Zea mays), a model organism and major crop. We explored the genetic variations within a collection of 224 maize inbred Dent lines and successively defined core genotype subsets to access multiple architectural, anatomical, and hydraulic parameters in the primary root (PR) and seminal roots (SR) of hydroponically grown seedlings. We found 9-, 3.5-, and 12.4-fold genotypic differences for root hydraulics (Lpr), PR size, and lateral root size, respectively, that shaped wide and independent variations of root structure and function. Within genotypes, PR and SR showed similarities in hydraulics and, to a lesser extent, in anatomy. They had comparable aquaporin activity profiles that, however, could not be explained by aquaporin expression levels. Genotypic variations in the size and number of late meta xylem vessels were positively correlated with Lpr. Inverse modeling further revealed dramatic genotypic differences in the xylem conductance profile. Thus, tremendous natural variation of maize root hydraulic architecture underlies a high diversity of water uptake strategies and paves the way to quantitative genetic dissection of its elementary traits.


Subject(s)
Aquaporins , Water , Zea mays , Aquaporins/genetics , Aquaporins/metabolism , Phenotype , Plant Roots/metabolism , Water/metabolism , Zea mays/metabolism
3.
Plant Soil ; 478(1-2): 349-370, 2022.
Article in English | MEDLINE | ID: mdl-36277078

ABSTRACT

Background: Root water transport, which critically contributes to the plant water status and thereby plant productivity, has been the object of extensive experimental and theoretical studies. However, root systems represent an intricate assembly of cells in complex architectures, including many tissues at distinct developmental stages. Our comprehension of where and how molecular actors integrate their function in order to provide the root with its hydraulic properties is therefore still limited. Scope: Based on current literature and prospective discussions, this review addresses how root water transport can be experimentally measured, what is known about the underlying molecular actors, and how elementary water transport processes are scaled up in numerical/mathematical models. Conclusions: The theoretical framework and experimental procedures on root water transport that are in use today have been established a few decades ago. However, recent years have seen the appearance of new techniques and models with enhanced resolution, down to a portion of root or to the tissue level. These advances pave the way for a better comprehension of the dynamics of water uptake by roots in the soil.

4.
Front Plant Sci ; 9: 1411, 2018.
Article in English | MEDLINE | ID: mdl-30319673

ABSTRACT

Root hair patterning is best studied in Arabidopsis thaliana. A pattern of root hair and non-root hair files is governed by a gene-regulatory network of activators and inhibitors. Under phosphate starvation conditions, extra root hairs are formed in non-root hair positions. This raises the question, whether and how this environmental stimulus is mediated by the known root hair gene network. In this study, we provide genetic and molecular data on the role of ETC1 in the phosphate starvation induced ectopic root hair formation. We show that the expression in the epidermis is irregular and reduced and that a new expression domain is induced in the sub-epidermis. By expressing ETC1 in the sub-epidermis, we show that this is sufficient to induce extra root hair formation in N-files. This suggests that the phosphate induced expressional switch from epidermal to epidermal plus sub-epidermal expression of ETC1 is one environmental input to the underlying patterning network.

5.
Plant Cell Environ ; 40(8): 1429-1441, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28252189

ABSTRACT

Leaf veins provide the mechanical support and are responsible for the transport of nutrients and water to the plant. High vein density is a prerequisite for plants to have C4 photosynthesis. We investigated the genetic variation and genetic architecture of leaf venation traits within the species Arabidopsis thaliana using natural variation. Leaf venation traits, including leaf vein density (LVD) were analysed in 66 worldwide accessions and 399 lines of the multi-parent advanced generation intercross population. It was shown that there is no correlation between LVD and photosynthesis parameters within A. thaliana. Association mapping was performed for LVD and identified 16 and 17 putative quantitative trait loci (QTLs) in the multi-parent advanced generation intercross and worldwide sets, respectively. There was no overlap between the identified QTLs suggesting that many genes can affect the traits. In addition, linkage mapping was performed using two biparental recombinant inbred line populations. Combining linkage and association mapping revealed seven candidate genes. For one of the candidate genes, RCI2c, we demonstrated its function in leaf venation patterning.


Subject(s)
Arabidopsis/genetics , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Quantitative Trait Loci/genetics , Base Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Ecotype , Gene Expression Regulation, Plant , Genetic Association Studies , Photosynthesis , Polymorphism, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Plant Physiol ; 169(4): 2359-70, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26468519

ABSTRACT

Precise measurements of leaf vein traits are an important aspect of plant phenotyping for ecological and genetic research. Here, we present a powerful and user-friendly image analysis tool named phenoVein. It is dedicated to automated segmenting and analyzing of leaf veins in images acquired with different imaging modalities (microscope, macrophotography, etc.), including options for comfortable manual correction. Advanced image filtering emphasizes veins from the background and compensates for local brightness inhomogeneities. The most important traits being calculated are total vein length, vein density, piecewise vein lengths and widths, areole area, and skeleton graph statistics, like the number of branching or ending points. For the determination of vein widths, a model-based vein edge estimation approach has been implemented. Validation was performed for the measurement of vein length, vein width, and vein density of Arabidopsis (Arabidopsis thaliana), proving the reliability of phenoVein. We demonstrate the power of phenoVein on a set of previously described vein structure mutants of Arabidopsis (hemivenata, ondulata3, and asymmetric leaves2-101) compared with wild-type accessions Columbia-0 and Landsberg erecta-0. phenoVein is freely available as open-source software.


Subject(s)
Arabidopsis/anatomy & histology , Image Processing, Computer-Assisted/methods , Plant Vascular Bundle/anatomy & histology , Software , Phenotype , Plant Leaves/anatomy & histology , Reproducibility of Results
7.
Plant Physiol ; 166(3): 1280-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25248719

ABSTRACT

In Arabidopsis (Arabidopsis thaliana), branched root hairs are an indicator of defects in root hair tip growth. Among 62 accessions, one accession (Heiligkreuztal2 [HKT2.4]) displayed branched root hairs, suggesting that this accession carries a mutation in a gene of importance for tip growth. We determined 200- to 300-kb mapping intervals using a mapping-by-sequencing approach of F2 pools from crossings of HKT2.4 with three different accessions. The intersection of these mapping intervals was 80 kb in size featuring not more than 36 HKT2.4-specific single nucleotide polymorphisms, only two of which changed the coding potential of genes. Among them, we identified the causative single nucleotide polymorphism changing a splicing site in ARMADILLO REPEAT-CONTAINING KINESIN1. The applied strategies have the potential to complement statistical methods in high-throughput phenotyping studies using different natural accessions to identify causative genes for distinct phenotypes represented by only one or a few accessions.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Armadillo Domain Proteins/genetics , Kinesins/genetics , Polymorphism, Single Nucleotide , Alleles , Animals , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Armadillo Domain Proteins/metabolism , Armadillos , Chromosome Mapping , Kinesins/metabolism , Mutation , Phenotype , Plant Roots/genetics , Plant Roots/growth & development
8.
Plant Physiol ; 165(1): 186-95, 2014 May.
Article in English | MEDLINE | ID: mdl-24676857

ABSTRACT

In Arabidopsis (Arabidopsis thaliana), root hairs are formed in cell files over the cleft of underlying cortex cells. This pattern is established by a well-known gene regulatory network of transcription factors. In this study, we show that WRKY75 suppresses root hair development in nonroot hair files and that it represses the expression of TRIPTYCHON and CAPRICE. The WRKY75 protein binds to the CAPRICE promoter in a yeast one-hybrid assay. Binding to the promoter fragment requires an intact WRKY protein-binding motif, the W box. A comparison of the spatial expression of WRKY75 and the localization of the WRKY75 protein revealed that WRKY75 is expressed in the pericycle and vascular tissue and that the WRKY75 RNA or protein moves into the epidermis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Body Patterning/genetics , Gene Expression Regulation, Plant , Genes, Plant , Plant Roots/growth & development , Plant Roots/genetics , Transcription Factors/metabolism , Arabidopsis/growth & development , Base Sequence , Glucuronidase/metabolism , Molecular Sequence Data , Mutation/genetics , Phenotype , Plant Epidermis/cytology , Plant Epidermis/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Protein Transport , RNA Transport , RNA, Plant/metabolism , Transcription, Genetic , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...