Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biochem ; 114(5): 1001-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23150462

ABSTRACT

Bone loss is a well documented phenomenon occurring in humans both in short- and in long-term spaceflights. This phenomenon can be also reproduced on the ground in human and animals and also modeled in cell-based analogs. Since space flights are infrequent and expensive to study the biomedical effects of microgravity on the human body, much of the known pathology of bone loss comes from experimental studies. The most commonly used in vitro simulators of microgravity are clinostats while in vivo simulators include the bed rest studies in humans and hindlimb unloading experiments in animals. Despite the numerous reports that have documented bone loss in wide ranges in multiple crew members, the pathology remains a key concern and development of effective countermeasures is still a major task. Thus far, the offered modalities have not shown much success in preventing or alleviating bone loss in astronauts and cosmonauts. The objective of this review is to capture the most recent research on bone loss from spaceflights, bed rest and hindlimb unloading, and in vitro studies utilizing cellular models in clinostats. Additionally, this review offers projections on where the research has to focus to ensure the most rapid development of effective countermeasures.


Subject(s)
Bone Resorption/pathology , Research/trends , Space Flight , Weightlessness Simulation/adverse effects , Bed Rest , Hindlimb Suspension , Humans
2.
J Cell Biochem ; 101(3): 587-99, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17243119

ABSTRACT

Weightlessness or microgravity of spaceflight induces bone loss due in part to decreased bone formation by unknown mechanisms. Due to difficulty in performing experiments in space, several ground-based simulators such as the Rotating Wall Vessel (RWV) and Random Positioning Machine (RPM) have become critical venues to continue studying space biology. However, these simulators have not been systematically compared to each other or to mechanical stimulating models. Here, we hypothesized that exposure to RWV inhibits differentiation and alters gene expression profiles of 2T3 cells, and a subset of these mechanosensitive genes behaves in a manner consistent to the RPM and opposite to the trends incurred by mechanical stimulation of mouse tibiae. Exposure of 2T3 preosteoblast cells to the RWV for 3 days inhibited alkaline phosphatase activity, a marker of differentiation, and downregulated 61 and upregulated 45 genes by more than twofold compared to static 1 g controls, as shown by microarray analysis. The microarray results were confirmed by real-time PCR and/or Western blots for seven separate genes and proteins including osteomodulin, runx2, and osteoglycin. Comparison of the RWV data to the RPM microarray study that we previously published showed 14 mechanosensitive genes that changed in the same direction. Further comparison of the RWV and RPM results to microarray data from mechanically loaded mouse tibiae reported by an independent group revealed that three genes including osteoglycin were upregulated by the loading and downregulated by our simulators. These mechanosensitive genes may provide novel insights into understanding the mechanisms regulating bone formation and potential targets for countermeasures against decreased bone formation during space flight and in pathologies associated with lack of bone formation.


Subject(s)
Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Osteoblasts/metabolism , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Blotting, Western , Cells, Cultured , Gene Expression Regulation , Immunoblotting , Mice , Osteoblasts/cytology , Reverse Transcriptase Polymerase Chain Reaction , Stress, Mechanical , Weightlessness Simulation/instrumentation , Weightlessness Simulation/methods
3.
J Cell Biochem ; 99(4): 1187-202, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16795038

ABSTRACT

Studies conducted in real Space and in ground-based microgravity analog systems (MAS) have demonstrated changes in numerous lymphocyte functions. In this investigation we explored whether the observed functional changes in lymphocytes in MAS are associated with changes in gene expression. NASA-developed Rotating Wall Vessel (RWV) bioreactor was utilized as a MAS. Activated T lymphocytes were obtained by adding 100 ng/ml of anti-CD3 and 100 U/ml of IL-2 in RPMI medium to blood donor mononuclear cells for 4 days. After that the cells were washed and additionally cultured for up to 2 weeks with media (RPMI, 10% FBS and 100 U/ml IL-2) replacement every 3-4 days. Flow cytometry analysis had proven that activated T lymphocytes were the only cells remaining in culture by that time. They were split into two portions, cultured for additional 24 h in either static or simulated microgravity conditions, and used for RNA extraction. The gene expression was assessed by Affymetrix GeneChip Human U133A array allowing screening for expression of 18,400 genes. About 4-8% of tested genes responded to MG by more than a 1.5-fold change in expression; however, reproducible changes were observed only in 89 genes. Ten of these genes were upregulated and 79 were downregulated. These genes were categorized by associated pathways and viewed graphically through histogram analysis. Separate histograms of each pathway were then constructed representing individual gene expression fold changes. Possible functional consequences of the identified reproducible gene expression changes are discussed.


Subject(s)
Gene Expression Profiling , Lymphocyte Activation/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Weightlessness Simulation , Apoptosis/genetics , Carrier Proteins/genetics , Cluster Analysis , DNA Repair/genetics , DNA-Binding Proteins/metabolism , Histones/metabolism , Humans , Immunity/genetics , Protein Folding , Protein Processing, Post-Translational/genetics , RNA-Binding Proteins/metabolism , Signal Transduction/genetics , Transcription Factors/genetics
4.
In Vitro Cell Dev Biol Anim ; 38(2): 118-22, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11928994

ABSTRACT

Inflammatory adherence to, and locomotion through the interstitium is an important component of the immune response. Conditions such as microgravity and modeled microgravity (MMG) severely inhibit lymphocyte locomotion in vitro through gelled type I collagen. We used the NASA rotating wall vessel bioreactor or slow-turning lateral vessel as a prototype for MMG in ground-based experiments. Previous experiments from our laboratory revealed that when lymphocytes (human peripheral blood mononuclear cells [PBMCs]) were first activated with phytohemaglutinin followed by exposure to MMG, locomotory capacity was not affected. In the present study, MMG inhibits lymphocyte locomotion in a manner similar to that observed in microgravity. Phorbol myristate acetate (PMA) treatment of PBMCs restored lost locomotory capacity by a maximum of 87%. Augmentation of cellular calcium flux with ionomycin had no restorative effect. Treatment of lymphocytes with mitomycin C prior to exposure to MMG, followed by PMA, restored locomotion to the same extent as when nonmitomycin C-treated lymphocytes were exposed to MMG (80-87%), suggesting that deoxyribonucleic acid replication is not essential for the restoration of locomotion. Thus, direct activation of protein kinase C (PKC) with PMA was effective in restoring locomotion in MMG comparable to the normal levels seen in Ig cultures. Therefore, in MMG, lymphocyte calcium signaling pathways were functional, with defects occurring at either the level of PKC or upstream of PKC.


Subject(s)
Chemotaxis, Leukocyte , Lymphocytes/cytology , Models, Biological , Signal Transduction , Weightlessness , Chemotaxis, Leukocyte/drug effects , Ionomycin/pharmacology , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...