Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Adv Ther ; 41(2): 534-552, 2024 02.
Article in English | MEDLINE | ID: mdl-38110652

ABSTRACT

The implementation of artificial intelligence (AI) and machine learning (ML) techniques in healthcare has garnered significant attention in recent years, especially as a result of their potential to revolutionize personalized medicine. Despite advances in the treatment and management of asthma, a significant proportion of patients continue to suffer acute exacerbations, irrespective of disease severity and therapeutic regimen. The situation is further complicated by the constellation of factors that influence disease activity in a patient with asthma, such as medical history, biomarker phenotype, pulmonary function, level of healthcare access, treatment compliance, comorbidities, personal habits, and environmental conditions. A growing body of work has demonstrated the potential for AI and ML to accurately predict asthma exacerbations while also capturing the entirety of the patient experience. However, application in the clinical setting remains mostly unexplored, and important questions on the strengths and limitations of this technology remain. This review presents an overview of the rapidly evolving landscape of AI and ML integration into asthma management by providing a snapshot of the existing scientific evidence and proposing potential avenues for future applications.


Subject(s)
Artificial Intelligence , Asthma , Humans , Machine Learning , Asthma/diagnosis , Asthma/drug therapy , Precision Medicine , Patient Acuity
2.
BMJ Open ; 13(8): e073178, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558448

ABSTRACT

OBJECTIVE: Quantitatively evaluate the quality of data underlying real-world evidence (RWE) in heart failure (HF). DESIGN: Retrospective comparison of accuracy in identifying patients with HF and phenotypic information was made using traditional (ie, structured query language applied to structured electronic health record (EHR) data) and advanced (ie, artificial intelligence (AI) applied to unstructured EHR data) RWE approaches. The performance of each approach was measured by the harmonic mean of precision and recall (F1 score) using manual annotation of medical records as a reference standard. SETTING: EHR data from a large academic healthcare system in North America between 2015 and 2019, with an expected catchment of approximately 5 00 000 patients. POPULATION: 4288 encounters for 1155 patients aged 18-85 years, with 472 patients identified as having HF. OUTCOME MEASURES: HF and associated concepts, such as comorbidities, left ventricular ejection fraction, and selected medications. RESULTS: The average F1 scores across 19 HF-specific concepts were 49.0% and 94.1% for the traditional and advanced approaches, respectively (p<0.001 for all concepts with available data). The absolute difference in F1 score between approaches was 45.1% (98.1% relative increase in F1 score using the advanced approach). The advanced approach achieved superior F1 scores for HF presence, phenotype and associated comorbidities. Some phenotypes, such as HF with preserved ejection fraction, revealed dramatic differences in extraction accuracy based on technology applied, with a 4.9% F1 score when using natural language processing (NLP) alone and a 91.0% F1 score when using NLP plus AI-based inference. CONCLUSIONS: A traditional RWE generation approach resulted in low data quality in patients with HF. While an advanced approach demonstrated high accuracy, the results varied dramatically based on extraction techniques. For future studies, advanced approaches and accuracy measurement may be required to ensure data are fit-for-purpose.


Subject(s)
Artificial Intelligence , Heart Failure , Humans , Retrospective Studies , Stroke Volume , Ventricular Function, Left , Electronic Health Records , Natural Language Processing
3.
BMC Med Inform Decis Mak ; 23(1): 121, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452338

ABSTRACT

BACKGROUND: Real-world evidence (RWE)-based on information obtained from sources such as electronic health records (EHRs), claims and billing databases, product and disease registries, and personal devices and health applications-is increasingly used to support healthcare decision making. There is variability in the collection of EHR data, which includes "structured data" in predefined fields (e.g., problem list, open claims, medication list, etc.) and "unstructured data" as free text or narrative. Healthcare providers are likely to provide more complete information as free text, but extracting meaning from these fields requires newer technologies and a rigorous methodology to generate higher-quality evidence. Herein, an approach to identify concepts associated with the presence and progression of migraine was developed and validated using the complete patient record in EHR data, including both the structured and unstructured portions. METHODS: "Traditional RWE" approaches (i.e., capture from structured EHR fields and extraction using structured queries) and "Advanced RWE" approaches (i.e., capture from unstructured EHR data and processing by artificial intelligence [AI] technology, including natural language processing and AI-based inference) were evaluated against a manual chart abstraction reference standard for data collected from a tertiary care setting. The primary endpoint was recall; differences were compared using chi square. RESULTS: Compared with manual chart abstraction, recall for migraine and headache were 66.6% and 29.6%, respectively, for Traditional RWE, and 96.8% and 92.9% for Advanced RWE; differences were statistically significant (absolute differences, 30.2% and 63.3%; P < 0.001). Recall of 6 migraine-associated symptoms favored Advanced RWE over Traditional RWE to a greater extent (absolute differences, 71.5-88.8%; P < 0.001). The difference between traditional and advanced techniques for recall of migraine medications was less pronounced, approximately 80% for Traditional RWE and ≥ 98% for Advanced RWE (P < 0.001). CONCLUSION: Unstructured EHR data, processed using AI technologies, provides a more credible approach to enable RWE in migraine than using structured EHR and claims data alone. An algorithm was developed that could be used to further study and validate the use of RWE to support diagnosis and management of patients with migraine.


Subject(s)
Electronic Health Records , Migraine Disorders , Humans , Artificial Intelligence , Algorithms , Natural Language Processing , Migraine Disorders/diagnosis , Migraine Disorders/therapy
4.
J Headache Pain ; 23(1): 124, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36131249

ABSTRACT

BACKGROUND: In disease areas with 'soft' outcomes (i.e., the subjective aspects of a medical condition or its management) such as migraine or depression, extraction and validation of real-world evidence (RWE) from electronic health records (EHRs) and other routinely collected data can be challenging due to how the data are collected and recorded. In this study, we aimed to define and validate a scalable framework model to measure outcomes of migraine treatment and prevention by use of artificial intelligence (AI) algorithms within EHR data. METHODS: Headache specialists defined descriptive features based on routinely collected clinical data. Data elements were weighted to define a 10-point scale encompassing headache severity (1-7 points) and associated features (0-3 points). A test data set was identified, and a reference standard was manually produced by trained annotators. Automation (i.e., AI) was used to extract features from the unstructured data of patient encounters and compared to the reference standard. A threshold of 70% close agreement (within 1 point) between the automated score and the human annotator was considered to be a sufficient extraction accuracy. The accuracy of AI in identifying features used to construct the outcome model was also evaluated and success was defined as achieving an F1 score (i.e., the weighted harmonic mean of the precision and recall) of 80% in identifying encounters. RESULTS: Using data from 2,006 encounters, 11 features were identified and included in the model; the average F1 scores for automated extraction were 92.0% for AI applied to unstructured data. The outcome model had excellent accuracy in characterizing migraine status with an exact match for 77.2% of encounters and a close match (within 1 point) for 82.2%, compared with manual extraction scores-well above the 70% match threshold set prior to the study. CONCLUSION: Our findings indicate the feasibility of technology-enabled models for validated determination of soft outcomes such as migraine progression using the data elements typically captured in the real-world clinical setting, providing a scalable approach to credible EHR-based clinical studies.


Subject(s)
Artificial Intelligence , Migraine Disorders , Algorithms , Electronic Health Records , Headache , Humans , Migraine Disorders/prevention & control , Migraine Disorders/therapy
5.
PeerJ ; 4: e2131, 2016.
Article in English | MEDLINE | ID: mdl-27413633

ABSTRACT

An important trend in the early evolution of mammals was the shift from a sprawling stance, whereby the legs are held in a more abducted position, to a parasagittal one, in which the legs extend more downward. After that transition, many mammals shifted from a crouching stance to a more upright one. It is hypothesized that one consequence of these transitions was a decrease in the total mechanical power required for locomotion, because side-to-side accelerations of the body have become smaller, and thus less costly with changes in limb orientation. To test this hypothesis we compared the kinetics of locomotion in two mammals of body size close to those of early mammals (< 40 g), both with parasagittally oriented limbs: a crouching shrew (Blarina brevicauda; 5 animals, 17 trials) and a more upright vole (Microtus pennsylvanicus; 4 animals, 22 trials). As predicted, voles used less mechanical power per unit body mass to perform steady locomotion than shrews did (P = 0.03). However, while lateral forces were indeed smaller in voles (15.6 ± 2.0% body weight) than in shrews (26.4 ± 10.9%; P = 0.046), the power used to move the body from side-to-side was negligible, making up less than 5% of total power in both shrews and voles. The most power consumed for both species was that used to accelerate the body in the direction of travel, and this was much larger for shrews than for voles (P = 0.01). We conclude that side-to-side accelerations are negligible for small mammals-whether crouching or more upright-compared to their sprawling ancestors, and that a more upright posture further decreases the cost of locomotion compared to crouching by helping to maintain the body's momentum in the direction of travel.

6.
PLoS Biol ; 13(11): e1002297, 2015.
Article in English | MEDLINE | ID: mdl-26569116

ABSTRACT

The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats' wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles.


Subject(s)
Behavior, Animal , Chiroptera/physiology , Flight, Animal , Models, Anatomic , Wings, Animal/physiology , Algorithms , Animals , Biomechanical Phenomena , Body Weight , Imaging, Three-Dimensional , Organ Size , Reproducibility of Results , Species Specificity , Video Recording , Wings, Animal/anatomy & histology
8.
J Am Med Inform Assoc ; 22(2): 459-64, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25326600

ABSTRACT

Despite substantial investments in health information technology (HIT), the nation's goals of reducing cost and improving outcomes through HIT remain elusive. This period of transition, with new Office of National Coordinator for HIT leadership, upcoming Meaningful Use Stage III definitions, and increasing congressional oversight, is opportune to consider needed course corrections in HIT strategy. This article describes current problems and recommended changes in HIT policy, including approaches to usability, interoperability, and quality measurement. Recommendations refrain from interim measures, such as electronic health record adoption rates, and instead focus on measurable national value to benefit the economy, to reduce healthcare costs, and to improve clinical efficiency and care quality.


Subject(s)
Health Care Costs , Health Policy , Medical Informatics/organization & administration , Medical Records Systems, Computerized/organization & administration , Systems Integration , Diffusion of Innovation , Health Policy/economics , Health Policy/legislation & jurisprudence , Investments , Meaningful Use/economics , Medical Informatics/economics , Medical Informatics/legislation & jurisprudence , Medical Records Systems, Computerized/economics , Medical Records Systems, Computerized/standards , Software , United States
9.
PLoS One ; 9(5): e98093, 2014.
Article in English | MEDLINE | ID: mdl-24858194

ABSTRACT

In bats, the wing membrane is anchored not only to the body and forelimb, but also to the hindlimb. This attachment configuration gives bats the potential to modulate wing shape by moving the hindlimb, such as by joint movement at the hip or knee. Such movements could modulate lift, drag, or the pitching moment. In this study we address: 1) how the ankle translates through space during the wingbeat cycle; 2) whether amplitude of ankle motion is dependent upon flight speed; 3) how tension in the wing membrane pulls the ankle; and 4) whether wing membrane tension is responsible for driving ankle motion. We flew five individuals of the lesser dog-faced fruit bat, Cynopterus brachyotis (Family: Pteropodidae), in a wind tunnel and documented kinematics of the forelimb, hip, ankle, and trailing edge of the wing membrane. Based on kinematic analysis of hindlimb and forelimb movements, we found that: 1) during downstroke, the ankle moved ventrally and during upstroke the ankle moved dorsally; 2) there was considerable variation in amplitude of ankle motion, but amplitude did not correlate significantly with flight speed; 3) during downstroke, tension generated by the wing membrane acted to pull the ankle dorsally, and during upstroke, the wing membrane pulled laterally when taut and dorsally when relatively slack; and 4) wing membrane tension generally opposed dorsoventral ankle motion. We conclude that during forward flight in C. brachyotis, wing membrane tension does not power hindlimb motion; instead, we propose that hindlimb movements arise from muscle activity and/or inertial effects.


Subject(s)
Chiroptera/physiology , Flight, Animal/physiology , Hindlimb/physiology , Movement , Air , Animals , Biomechanical Phenomena , Female , Membranes/metabolism , Muscles/physiology , Wings, Animal/physiology
10.
J R Soc Interface ; 10(80): 20120794, 2013 Mar 06.
Article in English | MEDLINE | ID: mdl-23256188

ABSTRACT

Gliding is an efficient form of travel found in every major group of terrestrial vertebrates. Gliding is often modelled in equilibrium, where aerodynamic forces exactly balance body weight resulting in constant velocity. Although the equilibrium model is relevant for long-distance gliding, such as soaring by birds, it may not be realistic for shorter distances between trees. To understand the aerodynamics of inter-tree gliding, we used direct observation and mathematical modelling. We used videography (60-125 fps) to track and reconstruct the three-dimensional trajectories of northern flying squirrels (Glaucomys sabrinus) in nature. From their trajectories, we calculated velocities, aerodynamic forces and force coefficients. We determined that flying squirrels do not glide at equilibrium, and instead demonstrate continuously changing velocities, forces and force coefficients, and generate more lift than needed to balance body weight. We compared observed glide performance with mathematical simulations that use constant force coefficients, a characteristic of equilibrium glides. Simulations with varying force coefficients, such as those of live squirrels, demonstrated better whole-glide performance compared with the theoretical equilibrium state. Using results from both the observed glides and the simulation, we describe the mechanics and execution of inter-tree glides, and then discuss how gliding behaviour may relate to the evolution of flapping flight.


Subject(s)
Flight, Animal/physiology , Models, Biological , Sciuridae/physiology , Animals , Video Recording
11.
PLoS One ; 7(5): e36665, 2012.
Article in English | MEDLINE | ID: mdl-22615790

ABSTRACT

All bats experience daily and seasonal fluctuation in body mass. An increase in mass requires changes in flight kinematics to produce the extra lift necessary to compensate for increased weight. How bats modify their kinematics to increase lift, however, is not well understood. In this study, we investigated the effect of a 20% increase in mass on flight kinematics for Cynopterus brachyotis, the lesser dog-faced fruit bat. We reconstructed the 3D wing kinematics and how they changed with the additional mass. Bats showed a marked change in wing kinematics in response to loading, but changes varied among individuals. Each bat adjusted a different combination of kinematic parameters to increase lift, indicating that aerodynamic force generation can be modulated in multiple ways. Two main kinematic strategies were distinguished: bats either changed the motion of the wings by primarily increasing wingbeat frequency, or changed the configuration of the wings by increasing wing area and camber. The complex, individual-dependent response to increased loading in our bats points to an underappreciated aspect of locomotor control, in which the inherent complexity of the biomechanical system allows for kinematic plasticity. The kinematic plasticity and functional redundancy observed in bat flight can have evolutionary consequences, such as an increase potential for morphological and kinematic diversification due to weakened locomotor trade-offs.


Subject(s)
Biomechanical Phenomena , Chiroptera/physiology , Flight, Animal , Animals , Female
12.
Proc Biol Sci ; 279(1740): 2945-50, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22496186

ABSTRACT

Flying vertebrates change the shapes of their wings during the upstroke, thereby decreasing wing surface area and bringing the wings closer to the body than during downstroke. These, and other wing deformations, might reduce the inertial cost of the upstroke compared with what it would be if the wings remained fully extended. However, wing deformations themselves entail energetic costs that could exceed any inertial energy savings. Using a model that incorporates detailed three-dimensional wing kinematics, we estimated the inertial cost of flapping flight for six bat species spanning a 40-fold range of body masses. We estimate that folding and unfolding comprises roughly 44 per cent of the inertial cost, but that the total inertial cost is only approximately 65 per cent of what it would be if the wing remained extended and rigid throughout the wingbeat cycle. Folding and unfolding occurred mostly during the upstroke; hence, our model suggests inertial cost of the upstroke is not less than that of downstroke. The cost of accelerating the metacarpals and phalanges accounted for around 44 per cent of inertial costs, although those elements constitute only 12 per cent of wing weight. This highlights the energetic benefit afforded to bats by the decreased mineralization of the distal wing bones.


Subject(s)
Chiroptera/anatomy & histology , Chiroptera/physiology , Flight, Animal/physiology , Wings, Animal/physiology , Animals , Biomechanical Phenomena/physiology , Energy Metabolism/physiology , Movement/physiology
13.
J Exp Biol ; 214(Pt 9): 1546-53, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21490262

ABSTRACT

The center of mass (COM) of a flying animal accelerates through space because of aerodynamic and gravitational forces. For vertebrates, changes in the position of a landmark on the body have been widely used to estimate net aerodynamic forces. The flapping of relatively massive wings, however, might induce inertial forces that cause markers on the body to move independently of the COM, thus making them unreliable indicators of aerodynamic force. We used high-speed three-dimensional kinematics from wind tunnel flights of four lesser dog-faced fruit bats, Cynopterus brachyotis, at speeds ranging from 2.4 to 7.8 m s(-1) to construct a time-varying model of the mass distribution of the bats and to estimate changes in the position of their COM through time. We compared accelerations calculated by markers on the trunk with accelerations calculated from the estimated COM and we found significant inertial effects on both horizontal and vertical accelerations. We discuss the effect of these inertial accelerations on the long-held idea that, during slow flights, bats accelerate their COM forward during 'tip-reversal upstrokes', whereby the distal portion of the wing moves upward and backward with respect to still air. This idea has been supported by the observation that markers placed on the body accelerate forward during tip-reversal upstrokes. As in previously published studies, we observed that markers on the trunk accelerated forward during the tip-reversal upstrokes. When removing inertial effects, however, we found that the COM accelerated forward primarily during the downstroke. These results highlight the crucial importance of the incorporation of inertial effects of wing motion in the analysis of flapping flight.


Subject(s)
Acceleration , Chiroptera/physiology , Flight, Animal/physiology , Fruit , Wings, Animal/physiology , Animals , Biomechanical Phenomena/physiology , Chiroptera/anatomy & histology , Female , Models, Biological , Wings, Animal/anatomy & histology
14.
J Exp Biol ; 214(Pt 5): 786-93, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21307065

ABSTRACT

The metabolic cost of flight increases with mass, so animals that fly tend to exhibit morphological traits that reduce body weight. However, all flying animals must sometimes fly while carrying loads. Load carrying is especially relevant for bats, which experience nightly and seasonal fluctuations in body mass of 40% or more. In this study, we examined how the climbing flight performance of fruit bats (Cynopterus brachyotis; N=4) was affected by added loads. The body weights of animals were experimentally increased by 0, 7, 14 or 21% by means of intra-peritoneal injections of saline solution, and flights were recorded as animals flew upwards in a small enclosure. Using a model based on actuator disk theory, we estimated the mechanical power expended by the bats as they flew and separated that cost into different components, including the estimated costs of hovering, climbing and increasing kinetic energy. We found that even our most heavily loaded bats were capable of upward flight, but as the magnitude of the load increased, flight performance diminished. Although the cost of flight increased with loading, bats did not vary total induced power across loading treatment. This resulted in a diminished vertical velocity and thus shallower climbing angle with increased loads. Among trials there was considerable variation in power production, and those with greater power production tended to exhibit higher wingbeat frequencies and lower wing stroke amplitudes than trials with lower power production. Changes in stroke plane angle, downstroke wingtip velocity and wing extension did not correlate significantly with changes in power output. We thus observed the manner in which bats modulated power output through changes in kinematics and conclude that the bats in our study did not respond to increases in loading with increased power output because their typical kinematics already resulted in sufficient aerodynamic power to accommodate even a 21% increase in body weight.


Subject(s)
Chiroptera/physiology , Flight, Animal , Animals , Female , Weight-Bearing , Wings, Animal/physiology
15.
J Exp Biol ; 213(Pt 23): 4110-22, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21075953

ABSTRACT

In this study we compared the wing kinematics of 27 bats representing six pteropodid species ranging more than 40 times in body mass (M(b)=0.0278-1.152 kg), to determine whether wing posture and overall wing kinematics scaled as predicted according to theory. The smallest species flew in a wind tunnel and the other five species in a flight corridor. Seventeen kinematic markers on the midline and left side of the body were tracked in three dimensions. We used phylogenetically informed reduced major axis regression to test for allometry. We found that maximum wingspan (b(max)) and maximum wing area (S(max)) scaled with more positive allometry, and wing loading (Q(s)) with more negative allometry (b(max)∝M(b)(0.423); S(max)∝M(b)(0.768); Q(s)∝M(b)(0.233)) than has been reported in previous studies that were based on measurements from specimens stretched out flat on a horizontal surface. Our results suggest that larger bats open their wings more fully than small bats do in flight, and that for bats, body measurements alone cannot be used to predict the conformation of the wings in flight. Several kinematic variables, including downstroke ratio, wing stroke amplitude, stroke plane angle, wing camber and Strouhal number, did not change significantly with body size, demonstrating that many aspects of wing kinematics are similar across this range of body sizes. Whereas aerodynamic theory suggests that preferred flight speed should increase with mass, we did not observe an increase in preferred flight speed with mass. Instead, larger bats had higher lift coefficients (C(L)) than did small bats (C(L)∝M(b)(0.170)). Also, the slope of the wingbeat period (T) to body mass regression was significantly more shallow than expected under isometry (T∝M(b)(0.180)), and angle of attack (α) increased significantly with body mass [α∝log(M(b))7.738]. None of the bats in our study flew at constant speed, so we used multiple regression to isolate the changes in wing kinematics that correlated with changes in flight speed, horizontal acceleration and vertical acceleration. We uncovered several significant trends that were consistent among species. Our results demonstrate that for medium- to large-sized bats, the ways that bats modulate their wing kinematics to produce thrust and lift over the course of a wingbeat cycle are independent of body size.


Subject(s)
Body Size , Chiroptera/anatomy & histology , Chiroptera/physiology , Flight, Animal/physiology , Movement/physiology , Wings, Animal/anatomy & histology , Wings, Animal/physiology , Animals , Body Weight , Phylogeny , Regression Analysis
16.
J Exp Biol ; 213(Pt 20): 3427-40, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20889823

ABSTRACT

We investigated the detailed kinematics and wake structure of lesser dog-faced fruit bats (Cynopterus brachyotis) flying in a wind tunnel. High speed recordings of the kinematics were conducted to obtain three-dimensional reconstructions of wing movements. Simultaneously, the flow structure in the spanwise plane perpendicular to the flow stream was visualized using time-resolved particle image velocimetry. The flight of four individuals was investigated to reveal patterns in kinematics and wake structure typical for lower and higher speeds. The wake structure identified as typical for both speed categories was a closed-loop ring vortex consisting of the tip vortex and the limited appearance of a counter-rotating vortex near the body, as well as a small distally located vortex system at the end of the upstroke that generated negative lift. We also investigated the degree of consistency within trials and looked at individual variation in flight parameters, and found distinct differences between individuals as well as within individuals.


Subject(s)
Chiroptera/anatomy & histology , Chiroptera/physiology , Flight, Animal/physiology , Wings, Animal/anatomy & histology , Wings, Animal/physiology , Animals , Biomechanical Phenomena/physiology , Body Weight/physiology , Rheology , Rotation
17.
J Exp Biol ; 213(4): 551-7, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20118305

ABSTRACT

Linkage of echolocation call production with contraction of flight muscles has been suggested to reduce the energetic cost of flight with echolocation, such that the overall cost is approximately equal to that of flight alone. However, the pattern of call production with limb movement in terrestrially agile bats has never been investigated. We used synchronised high-speed video and audio recordings to determine patterns of association between echolocation call production and limb motion by Mystacina tuberculata Gray 1843 as individuals walked and flew, respectively. Results showed that there was no apparent linkage between call production and limb motion when bats walked. When in flight, two calls were produced per wingbeat, late in the downstroke and early in the upstroke. When bats walked, calls were produced at a higher rate, but at a slightly lower intensity, compared with bats in flight. These results suggest that M. tuberculata do not attempt to reduce the cost of terrestrial locomotion and call production through biomechanical linkage. They also suggest that the pattern of linkage seen when bats are in flight is not universal and that energetic savings cannot necessarily be explained by contraction of muscles associated with the downstroke alone.


Subject(s)
Chiroptera/physiology , Echolocation , Animals , Female , Flight, Animal , Locomotion , Male , New Zealand
19.
J Am Coll Surg ; 209(2): 198-205, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19632596

ABSTRACT

BACKGROUND: Exsanguinating hemorrhage necessitating massive blood product transfusion is associated with high mortality rates. Recent data suggest that altering the fresh frozen plasma to packed red blood cell ratio (FFP:PRBC) results in significant mortality reductions. Our purpose was to evaluate mortality and blood product use in the context of a newly initiated massive transfusion protocol (MTP). STUDY DESIGN: In July 2005, our American College of Surgeons-verified Level I trauma center implemented an MTP supporting a 1:1.5 FFP:PRBC ratio, improved communications, and enhanced systems flow to optimize rapid blood product availability. During the 4 years surrounding protocol implementation, we reviewed data on trauma patients directly admitted through the emergency department and requiring 10 or more units PRBCs during the first 24 hours. RESULTS: For the 2 years before and subsequent to MTP initiation, there were 4,223 and 4,414 trauma activations, of which 40 and 37 patients, respectively, met study criteria. The FFP:PRBC ratios were identical, at 1:1.8 and 1:1.8 (p = 0.97). Despite no change in FFP:PRBC ratio, mortality decreased from 45% to 19% (p = 0.02). Other significant findings included decreased mean time to first product: cross-matched RBCs (115 to 71 minutes; p = 0.02), FFP (254 to 169 minutes; p = 0.04), and platelets (418 to 241 minutes; p = 0.01). CONCLUSIONS: MTP implementation is associated with mortality reductions that have been ascribed principally to increased plasma use and decreased FFP:PRBC ratios. Our study found a significant reduction in mortality despite unchanged FFP:PRBC ratios and equivalent overall mean numbers of transfusions. Our data underscore the importance of expeditious product availability and emphasize that massive transfusion is a complex process in which product ratio and time to transfusion represent only the beginning of understanding.


Subject(s)
Blood Transfusion/mortality , Blood Transfusion/methods , Clinical Protocols , Hemorrhage/mortality , Hemorrhage/therapy , Hospital Mortality , Adult , Chi-Square Distribution , Erythrocyte Transfusion , Female , Humans , Logistic Models , Male , Middle Aged , Plasma , Resuscitation/methods , Trauma Centers , Treatment Outcome
20.
J Exp Biol ; 212(Pt 7): 945-53, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19282491

ABSTRACT

Bats typically roost head-under-heels but they cannot hover in this position, thus, landing on a ceiling presents a biomechanical challenge. To land, a bat must perform an acrobatic flip that brings the claws of the toes in contact with the ceiling and do so gently enough as to avoid injury to its slender hindlimbs. In the present study, we sought to determine how bats land, to seek a link between landing kinematics and ceiling impact forces, and to determine whether landing strategies vary among bat species. To do this, we measured the kinematics and kinetics of landing behaviour in three species of bats as they landed on a force-measuring platform (Cynopterus brachyotis, N=3; Carollia perspicillata, N=5; Glossophaga soricina, N=5). Kinematics were similar for all bats within a species but differed among species. C. brachyotis performed four-point landings, during which body pitch increased until the ventral surface of the body faced the ceiling and the thumbs and hindlimbs simultaneously grasped the surface. Bats of the other two species performed two-point landings, whereby only the hindlimbs made contact with the ceiling. During these two-point landings, the hindlimbs were drawn up the side of the body to come in contact with the ceiling, causing simultaneous changes in body pitch, roll and yaw over the course of the landing sequence. Right-handed and left-handed forms of the two-point landing were observed, with individuals often switching back and forth between them among landing events. The four-point landing of C. brachyotis resulted in larger peak forces (3.7+/-2.4 body weights; median +/- interquartile range) than the two-point landings of C. perspicillata (0.8+/-0.6 body weights) or G. soricina (0.8+/-0.2 body weights). Our results demonstrate that the kinematics and kinetics of landing vary among bat species and that there is a correlation between the way a bat moves its body when it lands and the magnitude of peak impact force it experiences during that landing. We postulate that these interspecific differences in impact force could result because of stronger selective pressure for gentle landing in cave-roosting (C. perspicillata, G. soricina) versus foliage-roosting (C. brachyotis) species.


Subject(s)
Chiroptera/physiology , Flight, Animal/physiology , Hindlimb/physiology , Analysis of Variance , Animals , Biomechanical Phenomena , Biophysics , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...