Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 688: 83-86, 2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31229831

ABSTRACT

Biological aerosols (bioaerosol) are atmospheric particles that act as a dispersion unit of living organisms across the globe thereby affecting the biogeographic distribution of organisms. Despite their importance, there is virtually no knowledge about bioaerosols emitted by pristine forests. Here we provide the very first survey of the prokaryotic community of a bioaerosol collected inside pristine Amazon forest at 2 m above ground. Total atmospheric particles were collected at the Amazon Tall Tower Observatory, subjected to metagenomic DNA extraction and the prokaryotic diversity was determined by 16S rRNA gene amplicon sequencing. A total of 271,577 reads of 250 bp of the 16S rRNA gene amplicon were obtained. Only 27% of the reads could be classified using the 16S SILVA database. Most belonged to Proteobacteria, Actinobacteria and Firmicutes which is in good agreement with other bioaerosol studies. Further inspection of the reads using Blast searches and the 18S SILVA database revealed that most of the dataset was composed of Fungi sequences. The identified microbes suggest that the atmosphere may act as an important gateway to interchange bacteria between plants, soil and water ecosystems.


Subject(s)
Aerosols/analysis , Air Microbiology , Forests , Biodiversity , Brazil , Environmental Monitoring
2.
Sci Total Environ ; 645: 1-9, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30015113

ABSTRACT

Mangroves are highly productive ecosystems located at the transition between the terrestrial and marine environments. Mangroves play an important role in carbon storage, nutrient cycling and support for the marine food web. Mangrove soils are formed by fine particles rich in organic carbon and are subject to constant fluctuations in oxygen, salinity and nutrient availability due to fresh water flux and tidal variations. Microbes play an important role in nutrient cycling in mangrove soils; however, studies on the mangrove soil microbiome are scarce. Here we compare the microbiome of pristine mangrove soil located in an environmentally protected area in Guaratuba, Southern Brazil, with the microbiome of mangrove soil affected by the presence of carbonaceaous debris eroding from an archeological site known as Sambaqui. We show that although the Sambaqui site has a major effect on soil chemistry, increasing the soil pH by 2.6 units, only minor changes in the soil microbiome were detected indicating resilience of the microbial community to pH variations. The high alpha diversity indexes and predicted metabolic potential suggest that the mangrove soil microbiome not only provides important ecological services but also may host a broad range of microbes and genes of biotechnological interest.


Subject(s)
Environmental Monitoring , Soil Microbiology , Wetlands , Brazil , Carbon , Microbiota , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...