Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Kidney Int ; 92(1): 79-88, 2017 07.
Article in English | MEDLINE | ID: mdl-28396119

ABSTRACT

Natural killer (NK) cells are a population of lymphoid cells that play a significant role in mediating innate immune responses. Studies in mice suggest a pathological role for NK cells in models of kidney disease. In this study, we characterized the NK cell subsets present in native kidneys of patients with tubulointerstitial fibrosis, the pathological hallmark of chronic kidney disease. Significantly higher numbers of total NK cells (CD3-CD56+) were detected in renal biopsies with tubulointerstitial fibrosis compared with diseased biopsies without fibrosis and healthy kidney tissue using multi-color flow cytometry. At a subset level, both the CD56dim NK cell subset and particularly the CD56bright NK cell subset were elevated in fibrotic kidney tissue. However, only CD56bright NK cells significantly correlated with the loss of kidney function. Expression of the tissue-retention and -activation molecule CD69 on CD56bright NK cells was significantly increased in fibrotic biopsy specimens compared with non-fibrotic kidney tissue, indicative of a pathogenic phenotype. Further flow cytometric phenotyping revealed selective co-expression of activating receptor CD335 (NKp46) and differentiation marker CD117 (c-kit) on CD56bright NK cells. Multi-color immunofluorescent staining of fibrotic kidney tissue localized the accumulation of NK cells within the tubulointerstitium, with CD56bright NK cells (NKp46+ CD117+) identified as the source of pro-inflammatory cytokine interferon-γ within the NK cell compartment. Thus, activated interferon-γ-producing CD56bright NK cells are positioned to play a key role in the fibrotic process and progression to chronic kidney disease.


Subject(s)
CD56 Antigen/analysis , Interferon-gamma/analysis , Kidney Tubules/immunology , Killer Cells, Natural/immunology , Renal Insufficiency, Chronic/immunology , Adult , Aged , Antigens, CD/analysis , Antigens, Differentiation, T-Lymphocyte/analysis , Biopsy , Case-Control Studies , Disease Progression , Female , Fibrosis , Flow Cytometry , Fluorescent Antibody Technique , Humans , Kidney Tubules/pathology , Killer Cells, Natural/pathology , Lectins, C-Type/analysis , Lymphocyte Activation , Male , Middle Aged , Natural Cytotoxicity Triggering Receptor 1/analysis , Proto-Oncogene Proteins c-kit/analysis , Renal Insufficiency, Chronic/pathology , Signal Transduction
2.
J Immunol ; 194(10): 4668-75, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25855358

ABSTRACT

T cell cross-reactivity underpins the molecular mimicry hypothesis in which microbial peptides sharing structural features with host peptides stimulate T cells that cross-react with self-peptides, thereby initiating and/or perpetuating autoimmune disease. EBV represents a potentially important factor in the pathogenesis of several T cell-mediated autoimmune disorders, with molecular mimicry a likely mechanism. In this study, we describe a human self-peptide (DELEIKAY) that is a homolog of a highly immunogenic EBV T cell epitope (SELEIKRY) presented by HLA-B*18:01. This self-peptide was shown to bind stably to HLA-B*18:01, and peptide elution/mass spectrometric studies showed it is naturally presented by this HLA molecule on the surface of human cells. A significant proportion of CD8(+) T cells raised from some healthy individuals against this EBV epitope cross-reacted with the self-peptide. A diverse array of TCRs was expressed by the cross-reactive T cells, with variable functional avidity for the self-peptide, including some T cells that appeared to avoid autoreactivity by a narrow margin, with only 10-fold more of the self-peptide required for equivalent activation as compared with the EBV peptide. Structural studies revealed that the self-peptide-HLA-B*18:01 complex is a structural mimic of the EBV peptide-HLA-B*18:01 complex, and that the strong antiviral T cell response is primarily dependent on the alanine/arginine mismatch at position 7. To our knowledge, this is the first report confirming the natural presentation of a self-peptide cross-recognized in the context of self-HLA by EBV-reactive CD8(+) T cells. These results illustrate how aberrant immune responses and immunopathological diseases could be generated by EBV infection.


Subject(s)
Antigens, Viral/immunology , Autoantigens/immunology , Autoimmunity/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Herpesvirus 4, Human/immunology , Antigen Presentation/immunology , Chromatography, Liquid , Cross Reactions/immunology , Epstein-Barr Virus Infections/immunology , HLA-B Antigens/immunology , Humans , Molecular Mimicry/immunology , Tandem Mass Spectrometry
3.
J Virol ; 89(1): 703-12, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25355876

ABSTRACT

UNLABELLED: Polymorphism in the human leukocyte antigen (HLA) loci ensures that the CD8(+) T cell response to viruses is directed against a diverse range of antigenic epitopes, thereby minimizing the impact of virus escape mutation across the population. The BZLF1 antigen of Epstein-Barr virus is an immunodominant target for CD8(+) T cells, but the response has been characterized only in the context of a limited number of HLA molecules due to incomplete epitope mapping. We have now greatly expanded the number of defined CD8(+) T cell epitopes from BZLF1, allowing the response to be evaluated in a much larger proportion of the population. Some regions of the antigen fail to be recognized by CD8(+) T cells, while others include clusters of overlapping epitopes presented by different HLA molecules. These highly immunogenic regions of BZLF1 include polymorphic sequences, such that up to four overlapping epitopes are impacted by a single amino acid variation common in different regions of the world. This focusing of the immune response to limited regions of the viral protein could be due to sequence similarity to human proteins creating "immune blind spots" through self-tolerance. This study significantly enhances the understanding of the immune response to BZLF1, and the precisely mapped T cell epitopes may be directly exploited in vaccine development and adoptive immunotherapy. IMPORTANCE: Epstein-Barr virus (EBV) is an important human pathogen, associated with several malignancies, including nasopharyngeal carcinoma and Hodgkin lymphoma. T lymphocytes are critical for virus control, and clinical trials aimed at manipulating this arm of the immune system have demonstrated efficacy in treating these EBV-associated diseases. These trials have utilized information on the precise location of viral epitopes for T cell recognition, for either measuring or enhancing responses. In this study, we have characterized the T cell response to the highly immunogenic BZLF1 antigen of EBV by greatly expanding the number of defined T cell epitopes. An unusual clustering of epitopes was identified, highlighting a small region of BZLF1 that is targeted by the immune response of a high proportion of the world's population. This focusing of the immune response could be utilized in developing vaccines/therapies with wide coverage, or it could potentially be exploited by the virus to escape the immune response.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Herpesvirus 4, Human/immunology , Trans-Activators/immunology , CD8-Positive T-Lymphocytes/immunology , Epitope Mapping , Humans
4.
J Immunol ; 191(2): 561-71, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23749632

ABSTRACT

Class I HLAs generally present peptides of 8-10 aa in length, although it is unclear whether peptide length preferences are affected by HLA polymorphism. In this study, we investigated the CD8(+) T cell response to the BZLF1 Ag of EBV, which includes overlapping sequences of different size that nevertheless conform to the binding motif of the large and abundant HLA-B*44 supertype. Whereas HLA-B*18:01(+) individuals responded strongly and exclusively to the octamer peptide (173)SELEIKRY(180), HLA-B*44:03(+) individuals responded to the atypically large dodecamer peptide (169)EECDSELEIKRY(180), which encompasses the octamer peptide. Moreover, the octamer peptide bound more stably to HLA-B*18:01 than did the dodecamer peptide, whereas, conversely, HLA-B*44:03 bound only the longer peptide. Furthermore, crystal structures of these viral peptide-HLA complexes showed that the Ag-binding cleft of HLA-B*18:01 was more ideally suited to bind shorter peptides, whereas HLA-B*44:03 exhibited characteristics that favored the presentation of longer peptides. Mass spectrometric identification of > 1000 naturally presented ligands revealed that HLA-B*18:01 was more biased toward presenting shorter peptides than was HLA-B*44:03. Collectively, these data highlight a mechanism through which polymorphism within an HLA class I supertype can diversify determinant selection and immune responses by varying peptide length preferences.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HLA-B18 Antigen/immunology , HLA-B44 Antigen/immunology , Peptide Fragments/immunology , Binding Sites, Antibody , Cells, Cultured , Epitopes, T-Lymphocyte/immunology , HLA-B18 Antigen/genetics , HLA-B44 Antigen/genetics , Humans , Leukocytes, Mononuclear/immunology , Polymorphism, Single Nucleotide , Protein Structure, Tertiary , Trans-Activators/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...