Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35161419

ABSTRACT

Orange sweet potato (OSP) and red rice (RR) are rich sources of health benefit-associated substances and can be conventionally cooked or developed into food products. This research approach was to closely monitor the changes of bioactive compounds and their ability as antioxidants from the native form to the food products which are ready to be consumed. Moreover, this research explored the individual carotenoids and tocopherols of raw and cooked OSP and RR and their developed flake products, and also investigated their antioxidant activity, physicochemical properties, and sensory properties. Simultaneous identification using the liquid chromatographic method showed that OSP, RR, and their flake products have significant amounts (µg/g) of ß-carotene (278.58-48.83), α-carotene (19.57-15.66), ß-cryptoxanthin (4.83-2.97), α-tocopherol (57.65-18.31), and also γ-tocopherol (40.11-12.15). Different responses were observed on the bioactive compound and antioxidant activity affected by heating process. Meanwhile, OSP and RR can be combined to form promising flake products, as shown from the physicochemical analysis such as moisture (5.71-4.25%) and dietary fiber (13.86-9.47%) contents, water absorption index (1.69-1.06), fracturability (8.48-2.27), crispness (3.9-1.5), and color. Those quality parameters were affected by the proportions of OSP and RR in the flake products. Moreover, the preference scores (n = 120 panelists) for the flakes ranged from slightly liked to indifferent. It can be concluded that OSP and RR are potential sources of bioactive compounds which could act as antioxidants and could be developed into flake products that meet the dietary and sensory needs of consumers.

2.
Bioresour Bioprocess ; 9(1): 128, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-38647786

ABSTRACT

As a widely consumed fermented milk product, yogurt undergoes constant development to increase its functional properties. Monascus purpureus-fermented durian seed, which has been proven to possess antioxidative properties, has the potential to improve yogurt properties. This study aimed to analyze the use of Monascus-fermented durian seed (MFDS) as a functional ingredient in yogurt and its effect on physicochemical properties, lactic acid bacteria (LAB) count, antioxidative properties, and consumer acceptability of set-type yogurt during refrigeration. Changes in physicochemical properties, including color, pH, titratable acidity, syneresis, LAB count, total phenolic content (TPC), and antioxidant activity were evaluated at 7-day intervals during 14 days of refrigerated storage (4 °C). Sensory evaluations were carried out for freshly made samples after 7 days of storage. The results showed that the addition of MFDS to yogurt gave significant effects on some of the parameters measured. Yogurt with added MFDS powder produced a more red color (L = 88.55 ± 1.28, a* = 2.63 ± 0.17, b* = 11.45 ± 1.15, c = 11.75 ± 1.15, H = 77.00 ± 0.64), reached the highest TPC (2.21 ± 0.46 mg/GAE g), antioxidant activity (0.0125 ± 0.0032 mg GAE/g), and syneresis (5.24 ± 0.51%) throughout 14 days of storage. The addition of MFDS only gave a slight difference to pH and titratable acidity, while no significant difference was made for LAB count. For sensory evaluation, the addition of MFDS, particularly the ethanol extract, to yogurt was well-liked by panelists. Citrinin content in MFDS yogurt can be decreased under the limits set. Overall, the addition of MFDS has a high potential of improving yogurt properties, particularly its antioxidative properties.

3.
Bioresour Bioprocess ; 8(1): 129, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-38650194

ABSTRACT

The Monascus fermentation industry has gained global attention. Its key products, i.e., pigments, functional food ingredients, food supplements, and medicinal use, are growing in the world's market. Efforts to find the cost-effective substrate for Monascus fermentation have remained the target. This paper aimed to appraise the utilization of agro-industrial by-products (cereal, starchy tuber and root, legume, fruit, and coffee processing) as a cost-effective substrate for Monascus fermentation. The specific objective was to review the by-products pre-treatment, the fermentation process, product yield, and the bioactivity of the fermented products. Among all the by-products that could be used as the fermentation substrate, cereal brans do not need pre-treatment, but others need a suitable pre-treatment step, e.g., cassava peel, okara, and jackfruit seed to list a few, that need to be powdered beforehand. Other substrates, such as corn cob and durian seed, need soaking and size reduction through the pre-treatment step. During fermentation, Monascus produce many pigments, monacolin K, associated with rise in phenolic and flavonoid contents. These products possess antioxidant, antihypercholesterol, antidiabetes, and antiatherosclerosis activities which underpin their health significance. In conclusion, we report in this review the agro-industrial by-products which have potential prospects for pigments, functional food ingredients, food supplements, and therapeutic usages produced from Monascus fermentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...