Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37514033

ABSTRACT

Graphene-based nanomaterials (GNMs), including graphene, graphene oxide, reduced graphene oxide, and graphene quantum dots, may have direct anticancer activity or be used as nanocarriers for antitumor drugs. GNMs usually enter tumor cells by endocytosis and can accumulate in lysosomes. This accumulation prevents drugs bound to GNMs from reaching their targets, suppressing their anticancer effects. A number of chemical modifications are made to GNMs to facilitate the separation of anticancer drugs from GNMs at low lysosomal pH and to enable the lysosomal escape of drugs. Lysosomal escape may be associated with oxidative stress, permeabilization of the unstable membrane of cancer cell lysosomes, release of lysosomal enzymes into the cytoplasm, and cell death. GNMs can prevent or stimulate tumor cell death by inducing protective autophagy or suppressing autolysosomal degradation, respectively. Furthermore, because GNMs prevent bound fluorescent agents from emitting light, their separation in lysosomes may enable tumor cell identification and therapy monitoring. In this review, we explain how the characteristics of the lysosomal microenvironment and the unique features of tumor cell lysosomes can be exploited for GNM-based cancer therapy.

2.
Cells ; 12(9)2023 04 28.
Article in English | MEDLINE | ID: mdl-37174682

ABSTRACT

As autophagy can promote or inhibit inflammation, we examined autophagy-inflammation interplay in COVID-19. Autophagy markers in the blood of 19 control subjects and 26 COVID-19 patients at hospital admission and one week later were measured by ELISA, while cytokine levels were examined by flow cytometric bead immunoassay. The antiviral IFN-α and proinflammatory TNF, IL-6, IL-8, IL-17, IL-33, and IFN-γ were elevated in COVID-19 patients at both time points, while IL-10 and IL-1ß were increased at admission and one week later, respectively. Autophagy markers LC3 and ATG5 were unaltered in COVID-19. In contrast, the concentration of autophagic cargo receptor p62 was significantly lower and positively correlated with TNF, IL-10, IL-17, and IL-33 at hospital admission, returning to normal levels after one week. The expression of SARS-CoV-2 proteins NSP5 or ORF3a in THP-1 monocytes caused an autophagy-independent decrease or autophagy-inhibition-dependent increase, respectively, of intracellular/secreted p62, as confirmed by immunoblot/ELISA. This was associated with an NSP5-mediated decrease in TNF/IL-10 mRNA and an ORF3a-mediated increase in TNF/IL-1ß/IL-6/IL-10/IL-33 mRNA levels. A genetic knockdown of p62 mimicked the immunosuppressive effect of NSP5, and a p62 increase in autophagy-deficient cells mirrored the immunostimulatory action of ORF3a. In conclusion, the proinflammatory autophagy receptor p62 is reduced inacute COVID-19, and the balance between autophagy-independent decrease and autophagy blockade-dependent increase of p62 levels could affect SARS-CoV-induced inflammation.


Subject(s)
COVID-19 , Inflammation , Humans , Autophagy , COVID-19/pathology , Inflammation/metabolism , Interleukin-10/blood , Interleukin-17/blood , Interleukin-33/blood , Interleukin-6/blood , RNA, Messenger , SARS-CoV-2
3.
Life Sci ; 297: 120481, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35304128

ABSTRACT

We investigated the mechanisms and the role of autophagy in the differentiation of HL-60 human acute myeloid leukemia cells induced by protein kinase C (PKC) activator phorbol myristate acetate (PMA). PMA-triggered differentiation of HL-60 cells into macrophage-like cells was confirmed by cell-cycle arrest accompanied by elevated expression of macrophage markers CD11b, CD13, CD14, CD45, EGR1, CSF1R, and IL-8. The induction of autophagy was demonstrated by the increase in intracellular acidification, accumulation/punctuation of autophagosome marker LC3-II, and the increase in autophagic flux. PMA also increased nuclear translocation of autophagy transcription factors TFEB, FOXO1, and FOXO3, as well as the expression of several autophagy-related (ATG) genes in HL-60 cells. PMA failed to activate autophagy inducer AMP-activated protein kinase (AMPK) and inhibit autophagy suppressor mechanistic target of rapamycin complex 1 (mTORC1). On the other hand, it readily stimulated the phosphorylation of mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) via a protein kinase C-dependent mechanism. Pharmacological or genetic inhibition of ERK or JNK suppressed PMA-triggered nuclear translocation of TFEB and FOXO1/3, ATG expression, dissociation of pro-autophagic beclin-1 from its inhibitor BCL2, autophagy induction, and differentiation of HL-60 cells into macrophage-like cells. Pharmacological or genetic inhibition of autophagy also blocked PMA-induced macrophage differentiation of HL-60 cells. Therefore, MAP kinases ERK and JNK control PMA-induced macrophage differentiation of HL-60 leukemia cells through AMPK/mTORC1-independent, TFEB/FOXO-mediated transcriptional and beclin-1-dependent post-translational activation of autophagy.


Subject(s)
Leukemia , Autophagy , Extracellular Signal-Regulated MAP Kinases/metabolism , HL-60 Cells , Humans , Macrophages/metabolism , Tetradecanoylphorbol Acetate/metabolism , Tetradecanoylphorbol Acetate/pharmacology
4.
Free Radic Biol Med ; 177: 167-180, 2021 12.
Article in English | MEDLINE | ID: mdl-34678419

ABSTRACT

We investigated the ability of graphene quantum dot (GQD) nanoparticles to protect SH-SY5Y human neuroblastoma cells from oxidative/nitrosative stress induced by iron-nitrosyl complex sodium nitroprusside (SNP). GQD reduced SNP cytotoxicity by preventing mitochondrial depolarization, caspase-2 activation, and subsequent apoptotic death. Although GQD diminished the levels of nitric oxide (NO) in SNP-exposed cells, NO scavengers displayed only a slight protective effect, suggesting that NO quenching was not the main protective mechanism of GQD. GQD also reduced SNP-triggered increase in the intracellular levels of hydroxyl radical (•OH), superoxide anion (O2•-), and lipid peroxidation. Nonselective antioxidants, •OH scavenging, and iron chelators, but not superoxide dismutase, mimicked GQD cytoprotective activity, indicating that GQD protect cells by neutralizing •OH generated in the presence of SNP-released iron. Cellular internalization of GQD was required for optimal protection, since a removal of extracellular GQD by extensive washing only partly diminished their protective effect. Moreover, GQD cooperated with SNP to induce autophagy, as confirmed by the inhibition of autophagy-limiting Akt/PRAS40/mTOR signaling and increase in autophagy gene transcription, protein levels of proautophagic beclin-1 and LC3-II, formation of autophagic vesicles, and degradation of autophagic target p62. The antioxidant activity of GQD was not involved in autophagy induction, as antioxidants N-acetylcysteine and dimethyl sulfoxide failed to stimulate autophagy in SNP-exposed cells. Pharmacological inhibitors of early (wortmannin, 3-methyladenine) or late stages of autophagy (NH4Cl) efficiently reduced the protective effect of GQD. Therefore, the ability of GQD to prevent the in vitro neurotoxicity of SNP depends on both •OH/NO scavenging and induction of cytoprotective autophagy.


Subject(s)
Graphite , Neuroblastoma , Quantum Dots , Antioxidants/pharmacology , Apoptosis , Autophagy , Cell Line, Tumor , Humans , Oxidative Stress
5.
Cancers (Basel) ; 13(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34439299

ABSTRACT

Graphene-based nanomaterials (GNM) are plausible candidates for cancer therapeutics and drug delivery systems. Pure graphene and graphene oxide nanoparticles, as well as graphene quantum dots and graphene nanofibers, were all able to trigger autophagy in cancer cells through both transcriptional and post-transcriptional mechanisms involving oxidative/endoplasmic reticulum stress, AMP-activated protein kinase, mechanistic target of rapamycin, mitogen-activated protein kinase, and Toll-like receptor signaling. This was often coupled with lysosomal dysfunction and subsequent blockade of autophagic flux, which additionally increased the accumulation of autophagy mediators that participated in apoptotic, necrotic, or necroptotic death of cancer cells and influenced the immune response against the tumor. In this review, we analyze molecular mechanisms and structure-activity relationships of GNM-mediated autophagy modulation, its consequences for cancer cell survival/death and anti-tumor immune response, and the possible implications for the use of GNM in cancer therapy.

6.
J Pharmacol Sci ; 147(1): 156-167, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34294367

ABSTRACT

We investigated the effect of 3-methyladenine (3MA), a class III phosphatidylinositol 3-kinase (PI3K)-blocking autophagy inhibitor, on cancer cell death induced by simultaneous inhibition of glycolysis by 2-deoxyglucose (2DG) and mitochondrial respiration by rotenone. 2DG/rotenone reduced ATP levels and increased mitochondrial superoxide production, causing mitochondrial swelling and necrotic death in various cancer cell lines. 2DG/rotenone failed to increase proautophagic beclin-1 and autophagic flux in melanoma cells despite the activation of AMP-activated protein kinase (AMPK) and inhibition of mechanistic target of rapamycin complex 1 (mTORC1). 3MA, but not autophagy inhibition with other PI3K and lysosomal inhibitors, attenuated 2DG/rotenone-induced mitochondrial damage, oxidative stress, ATP depletion, and cell death, while antioxidant treatment mimicked its protective action. The protection was not mediated by autophagy upregulation via class I PI3K/Akt inhibition, as it was preserved in cells with genetically inhibited autophagy. 3MA increased AMPK and mTORC1 activation in energy-stressed cells, but neither AMPK nor mTORC1 inhibition reduced its cytoprotective effect. 3MA reduced JNK activation, and JNK pharmacological/genetic suppression mimicked its mitochondria-preserving and cytoprotective activity. Therefore, 3MA prevents energy stress-triggered cancer cell death through autophagy-independent mechanisms possibly involving JNK suppression and decrease of oxidative stress. Our results warrant caution when using 3MA as an autophagy inhibitor.


Subject(s)
Adenine/analogs & derivatives , Autophagy/drug effects , Melanoma/pathology , AMP-Activated Protein Kinases/metabolism , Adenine/pharmacology , Animals , Cell Death/drug effects , Deoxyglucose/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Melanoma/metabolism , Melanoma, Experimental , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondrial Swelling , Necrosis , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Rotenone/pharmacology
7.
BMC Nephrol ; 20(1): 281, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31349820

ABSTRACT

BACKGROUND: Peripheral arterial disease (PAD) is common in patients with end-stage renal disease on hemodialysis, but is frequently underdiagnosed. The risk factors for PAD are well known within the general population, but they differ somewhat in hemodialysis patients. This study aimed to determine the prevalence of PAD and its risk factors in patients on hemodialysis. METHODS: This cross-sectional study included 156 hemodialysis patients. Comorbidities and laboratory parameters were analyzed. Following clinical examinations, the ankle-brachial index was measured in all patients. PAD was diagnosed based on the clinical findings, ankle-brachial index < 0.9, and PAD symptoms. RESULTS: PAD was present in 55 of 156 (35.3%; 95% CI, 27.7-42.8%) patients. The patients with PAD were significantly older (67 ± 10 years vs. 62 ± 11 years, p = 0.014), more likely to have diabetes mellitus (p = 0.022), and anemia (p = 0.042), and had significantly lower serum albumin (p = 0.005), total cholesterol (p = 0.024), and iron (p = 0.004) levels, higher glucose (p = 0.002) and C-reactive protein (p < 0.001) levels, and lower dialysis adequacies (p = 0.040) than the patients without PAD. Multivariate analysis showed higher C-reactive protein level (odds ratio [OR], 1.03; 95% confidence interval [CI], 1.00-1.06; p = 0.030), vascular access by Hickman catheter (OR, 4.66; 95% CI, 1.03-21.0; p = 0.045), and symptoms of PAD (OR, 5.20; 95% CI, 2.60-10.4; p < 0.001) as independent factors associated with PAD in hemodialysis patients. CONCLUSION: The prevalence of PAD was high among patients with end-stage renal disease on hemodialysis. Symptoms of PAD, higher C-reactive protein levels, and Hickman vascular access were independent predictors of PAD in patients on hemodialysis.


Subject(s)
Kidney Failure, Chronic/therapy , Peripheral Arterial Disease/diagnosis , Peripheral Arterial Disease/epidemiology , Renal Dialysis , Aged , Cross-Sectional Studies , Female , Humans , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/etiology , Male , Middle Aged , Prevalence , Renal Dialysis/adverse effects , Risk Factors
8.
Med Princ Pract ; 27(4): 378-386, 2018.
Article in English | MEDLINE | ID: mdl-29794470

ABSTRACT

OBJECTIVE: To investigate the association of high baseline serum levels of metalloproteinases-3 (MMP-3) with structural damage to hand and feet joints, assessed by ultrasonography (US), in patients with early, treatment-naïve rheumatoid arthritis (RA), without initial X-ray-visible erosions, during 24 months follow-up. METHODS: Sixty-three early RA (European League Against Rheumatism/American College of Rheumatology 2010), disease-modifying anti-rheumatic drugs/glucocorticoid naïve patients (mean age 53.4 ± 14.1) with symptom duration ≤12 months, had baseline serum levels of MMP-3 tested. OMERACT US group definition was used to detect the presence, as well as longitudinal diameter of erosions by US at study entry and after 24 months, at the level of wrists, metacarpophalangeal (MCP2/MCP5) joints of both hands, and fifth metatarsophalangeal joints. RESULTS: Complete data were collected from 52 out of 63 patients. High baseline serum levels of MMP-3 (MMP-3-positive) were found in 46/63 patients. 122 bone erosions in total (1.9 bone erosions/patients) were detected by US at baseline visit and 213 erosions (4.3/patients) after 24 months. MMP-3 positive patients had significantly higher total number of erosions than MMP-3-negative (p = 0.039) and higher increase in size of bone erosions in the feet but not in the hand joints after follow-up (OR 4.82 [1.23-18.9], p = 0.024; OR 1.17 [0.320-4.26], p = 0.816 respectively). CONCLUSION: After 2 years of follow-up, US assessment showed a higher number of new bone erosions in MMP-3-positive compared to MMP-3-negative patients with early RA and no visible initial radiographic changes. High baseline levels of MMP-3 predict significantly higher structural damage progression at the level of feet, but not at the level of hand joints.


Subject(s)
Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/diagnostic imaging , Matrix Metalloproteinases/blood , Adult , Aged , Aged, 80 and over , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Disease Progression , Female , Foot/physiopathology , Humans , Male , Middle Aged , Prospective Studies , Ultrasonography , Wrist Joint/physiopathology , Young Adult
9.
Data Brief ; 11: 225-230, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28243617

ABSTRACT

Autophagy, a catabolic process involving intracellular degradation of unnecessary or dysfunctional cellular components through the lysosomal machinery, could act as a prosurvival, as well as a cytotoxic mechanism (Parzych and Klionsky, 2014) [1]. Cyclooxygenase inhibitor indomethacin inhibits proliferation of glioma cells, and has been reported to reduce the activity of the main autophagy repressor mammalian target of rapamycin (mTOR) (Pantovic et al., 2016) [2]. Here we investigated the ability of indomethacin to induce autophagy in U251 human glioma cells. We assessed the influence of indomethacin on intracellular acidification, expression of proautophagic protein beclin-1, and conversion of microtubule-associated protein light chain 3-I (LC3-I) to autophagosome-associated LC3-II, in the presence or absence of lysosomal inhibitors. The effect of genetic and pharmacological downregulation of autophagy on the cytotoxicity of indomethacin was also evaluated. The interpretation of these data can be found in "In vitro antiglioma action of indomethacin is mediated via AMP-activated protein kinase/mTOR complex 1 signaling pathway" (Pantovic et al., 2016; doi:10.1016/j.biocel.2016.12.007) [2].

10.
Int J Biochem Cell Biol ; 83: 84-96, 2017 02.
Article in English | MEDLINE | ID: mdl-27988363

ABSTRACT

We investigated the role of the intracellular energy-sensing AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in the in vitro antiglioma effect of the cyclooxygenase (COX) inhibitor indomethacin. Indomethacin was more potent than COX inhibitors diclofenac, naproxen, and ketoprofen in reducing the viability of U251 human glioma cells. Antiglioma effect of the drug was associated with p21 increase and G2M cell cycle arrest, as well as with oxidative stress, mitochondrial depolarization, caspase activation, and the induction of apoptosis. Indomethacin increased the phosphorylation of AMPK and its targets Raptor and acetyl-CoA carboxylase (ACC), and reduced the phosphorylation of mTOR and mTOR complex 1 (mTORC1) substrates p70S6 kinase and PRAS40 (Ser183). AMPK knockdown by RNA interference, as well as the treatment with the mTORC1 activator leucine, prevented indomethacin-mediated mTORC1 inhibition and cytotoxic action, while AMPK activators metformin and AICAR mimicked the effects of the drug. AMPK activation by indomethacin correlated with intracellular ATP depletion and increase in AMP/ATP ratio, and was apparently independent of COX inhibition or the increase in intracellular calcium. Finally, the toxicity of indomethacin towards primary human glioma cells was associated with the activation of AMPK/Raptor/ACC and subsequent suppression of mTORC1/S6K. By demonstrating the involvement of AMPK/mTORC1 pathway in the antiglioma action of indomethacin, our results support its further exploration in glioma therapy.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Glioma/drug therapy , Glioma/metabolism , Indomethacin/pharmacology , Multiprotein Complexes/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , AMP-Activated Protein Kinases/antagonists & inhibitors , AMP-Activated Protein Kinases/genetics , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Calcium/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cyclooxygenase Inhibitors/pharmacology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioma/pathology , Humans , Mechanistic Target of Rapamycin Complex 1 , Models, Biological , Multiprotein Complexes/metabolism , RNA, Small Interfering/genetics , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
11.
J Biol Chem ; 291(44): 22936-22948, 2016 10 28.
Article in English | MEDLINE | ID: mdl-27587392

ABSTRACT

We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-d-glucose (2DG). NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy.


Subject(s)
Deoxyglucose/pharmacology , Glioma/metabolism , Glycolysis/drug effects , Imidazoles/pharmacology , Lysosomes/drug effects , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Drug Synergism , Glioma/drug therapy , Glioma/physiopathology , Humans , Lysosomes/genetics , Lysosomes/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects
12.
Biomed Microdevices ; 18(2): 37, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27106025

ABSTRACT

Indian spice curcumin is known for its anticancer properties, but the anticancer mechanisms of nanoparticulate curcumin have not been completely elucidated. We here investigated the in vitro anticancer effect of blue light (470 nm, 1 W)-irradiated curcumin nanoparticles prepared by tetrahydrofuran/water solvent exchange, using U251 glioma, B16 melanoma, and H460 lung cancer cells as targets. The size of curcumin nanocrystals was approximately 250 nm, while photoexcitation induced their oxidation and partial agglomeration. Although cell membrane in the absence of light was almost impermeable to curcumin nanoparticles, photoexcitation stimulated their internalization. While irradiation with blue light (1-8 min) or nanocurcumin (1.25-10 µg/ml) alone was only marginally toxic to tumor cells, photoexcited nanocurcumin displayed a significant cytotoxicity depending both on the irradiation time and nanocurcumin concentration. Photoexcited nanocurcumin induced phosphorylation of c-Jun N-terminal kinase (JNK), mitochondrial depolarization, caspase-3 activation, and cleavage of poly (ADP-ribose) polymerase, indicating apoptotic cell death. Accordingly, pharmacologial inhibition of JNK and caspase activity rescued cancer cells from photoexcited nanocurcumin. On the other hand, antioxidant treatment did not reduce photocytotoxicity of nanocurcumin, arguing against the involvement of oxidative stress. By demonstrating the ability of photoexcited nanocurcumin to induce oxidative-stress independent, JNK- and caspase-dependent apoptosis, our results support its further investigation in cancer therapy.


Subject(s)
Apoptosis/drug effects , Curcumin/chemistry , Curcumin/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Light , Nanoparticles/chemistry , Solvents/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Biological Transport/radiation effects , Caspase 3/metabolism , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/radiation effects , Curcumin/metabolism , Enzyme Activation/drug effects , Enzyme Activation/radiation effects , Humans , Mice , Mitochondria/drug effects , Mitochondria/radiation effects , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Particle Size
13.
Exp Cell Res ; 326(1): 90-102, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24907655

ABSTRACT

We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Autophagy/drug effects , Idarubicin/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , TOR Serine-Threonine Kinases/metabolism , Adult , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Beclin-1 , Cell Proliferation/drug effects , Humans , Immunoenzyme Techniques , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Lymphocytes/cytology , Lymphocytes/drug effects , Lymphocytes/metabolism , Membrane Potential, Mitochondrial/drug effects , Membrane Proteins/metabolism , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Phosphorylation/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Tumor Cells, Cultured
14.
PLoS One ; 9(4): e94374, 2014.
Article in English | MEDLINE | ID: mdl-24714637

ABSTRACT

The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4) and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR), and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3ß or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Cytarabine/pharmacology , Leukemia/metabolism , TOR Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Apoptosis/genetics , Autophagy/genetics , Cell Line, Tumor , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Leukemic , Humans , Leukemia/drug therapy , Leukemia/genetics , Leukocytes, Mononuclear/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors
15.
Biomaterials ; 35(15): 4428-35, 2014 May.
Article in English | MEDLINE | ID: mdl-24612819

ABSTRACT

Synthesis of new antibacterial agents is becoming increasingly important in light of the emerging antibiotic resistance. In the present study we report that electrochemically produced graphene quantum dots (GQD), a new class of carbon nanoparticles, generate reactive oxygen species when photoexcited (470 nm, 1 W), and kill two strains of pathogenic bacteria, methicillin-resistant Staphylococcus aureus and Escherichia coli. Bacterial killing was demonstrated by the reduction in number of bacterial colonies in a standard plate count method, the increase in propidium iodide uptake confirming the cell membrane damage, as well as by morphological defects visualized by atomic force microscopy. The induction of oxidative stress in bacteria exposed to photoexcited GQD was confirmed by staining with a redox-sensitive fluorochrome dihydrorhodamine 123. Neither GQD nor light exposure alone were able to cause oxidative stress and reduce the viability of bacteria. Importantly, mouse spleen cells were markedly less sensitive in the same experimental conditions, thus indicating a fairly selective antibacterial photodynamic action of GQD.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Graphite/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Photosensitizing Agents/pharmacology , Quantum Dots/chemistry , Animals , Anti-Bacterial Agents/chemistry , Cells, Cultured , Escherichia coli/metabolism , Escherichia coli Infections/drug therapy , Graphite/chemistry , Humans , Light , Methicillin-Resistant Staphylococcus aureus/metabolism , Mice , Mice, Inbred BALB C , Oxidative Stress/drug effects , Photosensitizing Agents/chemistry , Reactive Oxygen Species/metabolism , Staphylococcal Infections/drug therapy
16.
Eur J Med Chem ; 74: 502-8, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24502898

ABSTRACT

The new coumarine derivative, 3-(1-(2-hydroxyethylamino)ethylidene)chroman-2,4--dione, and corresponding palladium(II) complex have been synthesized and characterized by microanalysis, infrared, (1)H and (13)C NMR spectroscopy. The proposed structure of the complex was confirmed on the basis of the X-ray structural study. The palladium(II) complex decreased viability of L929 mouse fibrosarcoma, U251 human glioma and B16 mouse melanoma cell lines in a dose dependent manner, while its ligand exhibited no significant cytotoxicity. The cytotoxic effect of the complex was comparable to that of cisplatin, and mediated by apoptosis associated with oxidative stress, mitochondrial depolarization and caspase activation. Therefore, our results indicate that newly synthesized palladium(II) complex might be a potential candidate for anticancer therapy.


Subject(s)
Coumarins/chemistry , Palladium/chemistry , Animals , Caspases/metabolism , Cell Line, Tumor , Coumarins/chemical synthesis , Coumarins/pharmacology , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Enzyme Activation , Humans , Ligands , Magnetic Resonance Spectroscopy , Membrane Potential, Mitochondrial/drug effects , Mice , Palladium/pharmacology , Reactive Oxygen Species/metabolism
17.
Med Res Rev ; 34(4): 744-67, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24123125

ABSTRACT

Macroautophagy (hereafter referred to as autophagy) is an evolutionary conserved catabolic process in which the cytoplasmic content is sequestered and degraded by the lysosomal machinery in order to maintain cellular homeostasis or provide energy during metabolic and hypoxic stress. It also represents an important component of the host response against infectious agents, performing surveillance and effector functions involved in detection and clearance of pathogens, including viruses. Moreover, it appears that autophagy plays a major role in determining the fate of both virally infected and uninfected cells by blocking or promoting their death in a virus- and cell-type-dependent manner. We here review the current knowledge on the complex involvement of autophagy in survival and death of the host cells during viral infection, focusing on the molecular mechanisms underlying viral modulation of autophagic response and its interference with the cell death pathways. We also discuss a possible significance of the autophagy-dependent modulation of cell death for the outcome and therapy of viral infections, emphasizing the need for a time- and cell-type-dependent fine-tuning of the autophagic response in achieving an optimal balance between beneficial and adverse effects.


Subject(s)
Autophagy , Virus Diseases/pathology , Virus Diseases/therapy , Viruses/metabolism , Animals , Humans
18.
Microbes Infect ; 15(8-9): 615-24, 2013.
Article in English | MEDLINE | ID: mdl-23669212

ABSTRACT

We investigated the role of autophagy, a stress-inducible lysosomal self-digestion of cellular components, in modulation of herpes simplex virus type 1 (HSV-1)-triggered death of U251 human glioma cells. HSV-1 caused apoptotic death in U251 cells, characterized by phosphatidylserine externalization, caspase activation and DNA fragmentation. HSV-1-induced apoptosis was associated with the induction of autophagic response, as confirmed by the conversion of cytosolic LC3-I to autophagosome-associated LC3-II, increase in intracellular acidification, presence of autophagic vesicles, and increase in proteolysis of the selective autophagic target p62. HSV-1-triggered autophagy was not associated with the significant increase in the expression of proautophagic protein beclin-1 or downregulation of the major autophagy suppressor mammalian target of rapamycin (mTOR). Moreover, the phosphorylation of mTOR and its direct substrate p70 S6 kinase was augmented by HSV-1 infection, while the mTOR stimulator Akt and inhibitor AMPK-activated protein kinase (AMPK) were accordingly activated and suppressed, respectively. An shRNA-mediated knockdown of the autophagy-essential LC3ß, as well as pharmacological inhibition of autophagy with bafilomycin A1 or 3-methyladenine, markedly accelerated apoptotic changes and ensuing cell death in HSV-1-infected glioma cells. These data indicate that AMPK/Akt/mTOR-independent autophagy could prolong survival of HSV-1-infected U251 glioma cells by counteracting the coinciding apoptotic response.


Subject(s)
Apoptosis , Autophagy , Herpesvirus 1, Human/immunology , Host-Pathogen Interactions , Neuroglia/immunology , TOR Serine-Threonine Kinases/metabolism , Cell Line , Cell Survival , Gene Expression Regulation , Herpesvirus 1, Human/pathogenicity , Humans , Neuroglia/virology
19.
Biochim Biophys Acta ; 1822(11): 1826-36, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22917563

ABSTRACT

The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. Transfection of SH-SY5Y cells with AMPK or LC3ß shRNA, as well as treatment with pharmacological autophagy inhibitors suppressed, while mTOR inhibitor rapamycin potentiated 6-OHDA-induced oxidative stress and apoptotic cell death. 6-OHDA induced phosphorylation of p38 mitogen-activated protein (MAP) kinase in an AMPK-dependent manner, and pharmacological inhibition of p38 MAP kinase reduced neurotoxicity, but not AMPK activation and autophagy triggered by 6-OHDA. Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Neuroblastoma/metabolism , Oxidopamine/pharmacology , AMP-Activated Protein Kinases/genetics , Acetylcysteine/pharmacology , Adaptor Proteins, Signal Transducing , Autophagy/genetics , Cell Line , Gene Expression Regulation/drug effects , Humans , Microscopy, Electron, Transmission , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Phosphorylation , RNA, Small Interfering , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Sequestosome-1 Protein , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Biomaterials ; 33(29): 7084-92, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22795854

ABSTRACT

The excellent photoluminescent properties of graphene quantum dots (GQD) makes them suitable candidates for biomedical applications, but their cytotoxicity has not been extensively studied. Here we show that electrochemically produced GQD irradiated with blue light (470 nm, 1W) generate reactive oxygen species, including singlet oxygen, and kill U251 human glioma cells by causing oxidative stress. The cell death induced by photoexcited GQD displayed morphological and/or biochemical characteristics of both apoptosis (phosphatidylserine externalization, caspase activation, DNA fragmentation) and autophagy (formation of autophagic vesicles, LC3-I/LC3-II conversion, degradation of autophagic target p62). Moreover, a genetic inactivation of autophagy-essential LC3B protein partly abrogated the photodynamic cytotoxicity of GQD. These data indicate potential usefulness of GQD in photodynamic therapy, but also raise concerns about their possible toxicity.


Subject(s)
Graphite/chemistry , Photosensitizing Agents/pharmacology , Quantum Dots , Apoptosis , Autophagy , Caspases/metabolism , Cell Line, Tumor , Cell Survival , DNA Fragmentation , Dose-Response Relationship, Drug , Electrochemistry/methods , Enzyme Activation , Flow Cytometry/methods , Humans , Luminescence , Microscopy, Electron, Transmission/methods , Oxidative Stress , Oxygen/chemistry , RNA Interference , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...