Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36501857

ABSTRACT

We present a theoretical analysis of the refractometric sensitivity of a spherical microresonator coated with a porous sensing layer performed for different whispering gallery modes. The effective refractive index of the modes is also calculated. The calculations are also made for a system which has an additional high-refractive index layer sandwiched between the microsphere and the porous sensing layer. The results of the calculation are discussed in regards to the applicability of the studied systems for gas sensor construction.

2.
Opt Lett ; 47(10): 2534-2537, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35561393

ABSTRACT

A non-resonant, concentrated, narrow beam of light emerging from an illuminated microlens is called a photonic nanojet (PNJ). According to currently prevailing opinion, microspheres and microcylinders are only able to generate a PNJ in their exterior when their refractive index ns (or refractive index contrast) is less than 2. In this Letter we demonstrate that a PNJ can emerge from a microsphere even when ns > 2: first by employing the laws of geometrical optics for a divergent light source; then, by using ray transfer matrix analysis, a mathematical condition for the Gaussian beam (GB) outside the high ns microsphere is derived. The PNJ outside the microsphere with ns = 2.5 is simulated using Generalized Lorenz-Mie theory (GLMT), by using a front focused GB source. The simulated difference between front and back focusing on the dependence of ns is confirmed experimentally by Raman imaging. By opening the PNJ field for high refractive index materials, we believe this work will be a nucleus for new ideas in the field and enable new PNJ applications.

3.
Sensors (Basel) ; 19(1)2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30609660

ABSTRACT

Porous silicon has been intensely studied for the past several decades and its applications were found in photovoltaics, biomedicine, and sensors. An important aspect for sensing devices is their long⁻term stability. One of the more prominent changes that occur with porous silicon as it is exposed to atmosphere is oxidation. In this work we study the influence of oxidation on the sensing properties of porous silicon. Porous silicon layers were prepared by electrochemical etching and oxidized in a tube furnace. We observed that electrical resistance of oxidized samples rises in response to the increasing ambient concentration of organic vapours and ammonia gas. Furthermore, we note the sensitivity is dependent on the oxygen treatment of the porous layer. This indicates that porous silicon has a potential use in sensing of organic vapours and ammonia gas when covered with an oxide layer.

4.
Opt Lett ; 39(17): 5173-6, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25166102

ABSTRACT

The modal dispersion of a whispering gallery mode (WGM) resonator is a very important parameter for use in all nonlinear optics applications. In order to tailor the WGM modal dispersion of a microsphere, we have coated a silica microsphere with a high-refractive-index coating in order to study its effect on the WGM modal dispersion. We used Er(3+) ions as a probe for a modal dispersion assessment. We found that, by varying the coating thickness, the geometrical cavity dispersion can be used to shift overall modal dispersion in a very wide range in both the normal and anomalous dispersion regime.

5.
Opt Express ; 21(18): 20954-63, 2013 Sep 09.
Article in English | MEDLINE | ID: mdl-24103968

ABSTRACT

Coatings of spherical optical microresonators are widely employed for different applications. Here the effect of the thickness of a homogeneous coating layer on the coupling of light from a tapered fiber to a coated microsphere has been studied. Spherical silica microresonators were coated using a 70SiO(2)- 30HfO(2) glass doped with 0.3 mol% Er(3+) ions. The coupling of a 1480 nm pump laser inside the sphere has been assessed using a tapered optical fiber and observing the 1530-1580 nm Er(3+) emission outcoupled to the same tapered fiber. The measurements were done for different coating thicknesses and compared with theoretical calculations to understand the relationship of the detected signal with the whispering gallery mode electric field profiles.

SELECTION OF CITATIONS
SEARCH DETAIL
...