Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(19)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34640219

ABSTRACT

The study of the transition from high-entropy alloys (HEAs) to conventional alloys (CAs) composed of the same alloying components is apparently important, both for understanding the formation of HEAs and for proper evaluation of their potential with respect to that of the corresponding CAs. However, this transition has thus far been studied in only two types of alloy systems: crystalline alloys of iron group metals (such as the Cantor alloy and its derivatives) and both amorphous (a-) and crystalline alloys, TE-TL, of early (TE = Ti, Zr, Nb, Hf) and late (TL = Co, Ni, Cu) transition metals. Here, we briefly overview the main results for the transition from HEAs to CAs in these alloy systems and then present new results for the electronic structure (ES), studied with photoemission spectroscopy and specific heat, atomic structure, thermal, magnetic and mechanical properties of a-TE-TL and Cantor-type alloys. A change in the properties of the alloys studied on crossing from the HEA to the CA concentration range mirrors that in the ES. The compositions of the alloys having the best properties depend on the alloy system and the property selected. This emphasizes the importance of knowing the ES for the design of new compositional complex alloys with the desired properties.

2.
J Phys Condens Matter ; 19(29): 296207, 2007 Jul 25.
Article in English | MEDLINE | ID: mdl-21483078

ABSTRACT

The magnetization processes in binary magnetic/non-magnetic amorphous alloy Hf(57)Fe(43) are investigated by the detailed measurement of magnetic hysteresis loops, temperature dependence of magnetization, relaxation of magnetization and magnetic ac susceptibility, including a nonlinear term. Blocking of magnetic moments at lower temperatures is accompanied by the slow relaxation of magnetization and magnetic hysteresis loops. All of the observed properties are explained by the superparamagnetic behaviour of the single domain magnetic clusters inside the non-magnetic host, their blocking by the anisotropy barriers and thermal fluctuation over the barriers accompanied by relaxation of magnetization. From magnetic viscosity analysis based on thermal relaxation over the anisotropy barriers it is found that magnetic clusters occupy the characteristic volume from 25 up to 200 nm(3). The validity of the superparamagnetic model of Hf(57)Fe(43) is based on the concentration of iron in the Hf(100-x)Fe(x) system that is just below the threshold for long range magnetic ordering. This work also throws more light on the magnetic behaviour of other amorphous alloys.

SELECTION OF CITATIONS
SEARCH DETAIL
...