Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Physiol ; 145(4): 1336-44, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17951449

ABSTRACT

omega3 fatty acid desaturases are the enzymes responsible for the synthesis of trienoic fatty acids in plants. These enzymes have been mainly investigated using molecular, biochemical, and genetic approaches but very little is known about their subcellular distribution in plant cells. In this work, the precise subcellular localization of the omega3 desaturase FAD7 was elucidated by immunofluorescence and immunogold labeling using a monospecific GmFAD7 polyclonal antibody in soybean (Glycine max) photoautotrophic cell suspension cultures. Confocal analysis revealed the localization of the GmFAD7 protein within the chloroplast; i.e. signals from FAD7 and chlorophyll autofluorescence showed specific colocalization. Immunogold labeling was pursued on cryofixed and freeze-substituted samples for convenient preservation of antigenicity and ultrastructure of membrane subcompartments. Our data revealed that the FAD7 protein was preferentially localized in the thylakoid membranes. Biochemical fractionation of purified chloroplasts and western analysis of the subfractions further confirmed these results. These findings suggest that not only the envelope, but also the thylakoid membranes could be sites of lipid desaturation in higher plants.


Subject(s)
Fatty Acid Desaturases/metabolism , Fatty Acids, Omega-3/biosynthesis , Glycine max/enzymology , Thylakoids/enzymology , Adaptation, Physiological , Fluorescent Antibody Technique , Immunohistochemistry , Glycine max/physiology , Glycine max/ultrastructure , Thylakoids/physiology , Thylakoids/ultrastructure
2.
Funct Plant Biol ; 33(11): 1001-1012, 2006 Nov.
Article in English | MEDLINE | ID: mdl-32689311

ABSTRACT

Soybean [Glycine max (L.) Merr.] cell suspensions have the capacity to develop tolerance to excess copper, constituting a convenient system for studies on the mechanisms of copper tolerance. The functional cell organisation changes observed in these cell cultures after both short-term (stressed cells) and long-term (acclimated cells) exposure to 10 µm CuSO4 are reported from structural, cytochemical and microanalytical approaches. Cells grown in the presence of 10 µm CuSO4 shared some structural features with untreated cells, such as: (i) a large cytoplasmic vacuole, (ii) chloroplasts along the thin layer of cytoplasm, (iii) nucleus in a peripheral location exhibiting circular-shaped nucleolus and a decondensed chromatin pattern, and (iv) presence of Cajal bodies in the cell nuclei. In addition, cells exposed to 10 µm CuSO4 exhibited important differences compared with untreated cells: (i) chloroplasts displayed rounded shape and smaller size with denser-structured internal membranes, especially in copper-acclimated cells; (ii) no starch granules were found within chloroplasts; (iii) the cytoplasmic vacuole was larger, especially after long-term copper exposure; (iv) the levels of citrate and malate increased. Extracellular dark-coloured deposits with high copper content attached at the outer surface of the cell wall were observed only in cells exposed to a short-term copper stress. Structural cell modifications, mainly affecting chloroplasts, accompanied the short-term copper-induced response and were maintained as stable characters during the period of adaptation to excess copper. Vacuolar changes accompanied the long-term copper response. The results indicate that the first response of soybean cells to excess copper prevents its entry into the cell by immobilising it in the cell wall, and after an adaptive period, acclimation to excess copper may be mainly due to vacuolar sequestration.

3.
Plant Cell Physiol ; 46(10): 1713-23, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16100229

ABSTRACT

A crucial step in the biosynthesis of jasmonic acid (JA) is the formation of its stereoisomeric precursor, cis-(+)-12-oxophytodienoic acid (OPDA), which is catalyzed by allene oxide cyclase (AOC, EC 5.3.99.6). A cDNA of AOC was isolated from Humulus lupulus var. Nugget. The ORF of 765 bp encodes a 255 amino acid protein, which carries a putative chloroplast targeting sequence. The recombinant protein without its putative chloroplast target sequence showed significant AOC activity. Previously we demonstrated that wounding induces organogenic nodule formation in hop. Here we show that the AOC transcript level increases in response to wounding of internodes, peaking between 2 and 4 h after wounding. In addition, Western blot analysis showed elevated levels of AOC peaking 24 h after internode inoculation. The AOC increase was accompanied by increased JA levels 24 h after wounding, whereas OPDA had already reached its highest level after 12 h. AOC is mostly present in the vascular bundles of inoculated internodes. During prenodule and nodule formation, AOC levels were still high. JA and OPDA levels decreased down to 10 and 118 pmol (g FW)(-1), respectively, during nodule formation, but increased during plantlet regeneration. Double immunolocalization analysis of AOC and Rubisco in connection with lugol staining showed that AOC is present in amyloplasts of prenodular cells and in the chloroplasts of vacuolated nodular cells, whereas meristematic cells accumulated little AOC. These data suggest a role of AOC and jasmonates in organogenic nodule formation and plantlet regeneration from these nodules.


Subject(s)
Cyclopentanes/metabolism , Humulus/metabolism , Intramolecular Oxidoreductases/metabolism , Plant Roots/metabolism , Amino Acid Sequence , Base Sequence , DNA Primers , Escherichia coli/genetics , Intramolecular Oxidoreductases/chemistry , Intramolecular Oxidoreductases/genetics , Molecular Sequence Data , Oxylipins , RNA, Messenger/genetics , Sequence Homology, Amino Acid
4.
Eur J Cell Biol ; 83(8): 425-33, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15506566

ABSTRACT

The expression and subcellular localization of extracellular signal-regulated kinase 1 or 2 (ERK1/2) homologues (HLERK1/2) during the process of organogenic nodule formation in Humulus lupulus var. Nugget was studied using antibodies specific for ERK1 and ERK2, and for phosphorylated mitogen-activated protein kinases (MAPKs). The increase in HLERK levels, detected by Western blotting 12 hours after wounding suggests their involvement in response to the wounding treatment applied for morphogenesis induction. In dividing cambial cells, occurring in between 4 and 7 days after morphogenesis induction, as well as in dividing prenodular cells (15 days after induction) HLERK1 and/or 2 were localized in the nucleus. However, as soon as nodular cells start proliferating to form shoot meristems, HLERK1 and 2 were detected in the cytoplasm and not in the nucleus. The data reported account for a differential expression and activation of HLERK1 and HLERK2 throughout the process of nodule formation and plantlet regeneration. HLERK1 appears to be expressed in the stages of nodule formation and plantlet regeneration, playing a possible role in controlling cell proliferation and differentiation. HLERK2 may be induced as a response to reactive oxygen species (ROS) generated by wounding of internodes as its expression is reduced in liquid medium with less oxygen availability compared to solid medium. However, addition of a ROS inhibitor to the liquid medium does not result in a further decrease in the HLERK2 level.


Subject(s)
Humulus/enzymology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Humulus/growth & development , Microscopy, Confocal , Microscopy, Fluorescence
5.
J Histochem Cytochem ; 52(2): 227-41, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14729875

ABSTRACT

Study of lipoxygenase expression (LOX; EC 1.13.11.12) during organogenic nodule formation in hop (Humulus lupulus var. Nugget) showed that LOXs are developmentally regulated throughout the process, suggesting their involvement in the response of internodes to wounding, nodule formation, and plantlet regeneration from these nodules. LOX activity and lipid peroxides exhibited a huge increase during the first week of culture, which may indicate a role for LOX and LOX products in response to wounding in hop, as reported for other systems. Western blotting analysis showed a de novo synthesis of LOX isoenzymes in response to wounding and the detection of three different isoenzymes. Confocal analysis of LOX immunofluorescence revealed the presence of the enzyme in cortical cells of induced internodes and in prenodular cells, mostly appearing as cytoplasmic spots. Some of them were identified as lipid bodies by cytochemical and double immunofluorescence assays, suggesting the involvement of a lipid body LOX during nodule formation. Immunogold labeling detected LOX in peroxisomes, lipid bodies, and plastids of nodular cells. Quantification of the labeling density provided statistical significance for the localization of LOX (three different isoenzymes) in the three compartments, which suggested a possible involvement of LOX in metabolic functions of these organelles during organogenic nodule formation and plantlet regeneration.


Subject(s)
Humulus/metabolism , Lipoxygenase/biosynthesis , Fluorescent Antibody Technique , Humulus/growth & development , Humulus/physiology , Immunoblotting , Lipid Peroxides/metabolism , Microscopy, Immunoelectron , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL