Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 891: 173672, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33190801

ABSTRACT

Agents that modulate the activity of high-voltage gated calcium channels (HVCCs) exhibit experimentally and clinically significant effect by relieving visceral pain. Among these agents, the toxins Phα1ß and ω-conotoxin MVIIA effectively reduce chronic pain in rodent models. The molecular mechanisms underlying the chronic pain associated with acute pancreatitis (AP) are poorly understood. Hypercalcemia is a risk factor; the role of cytosolic calcium is considered to be a modulator of pancreatitis. Blockade of Ca2+ signals may be useful as a prophylactic treatment of pancreatitis. We explored the pathophysiological roles of three peptide toxins: Phα1ß and its recombinant form CTK 01512-2-blockers of TRPA1 receptor and HVCCs and ω-conotoxin MVIIA, a specific blocker of N-type calcium channels in cerulein-induced AP. Cerulein injection elicits AP in rats, evidenced by an increase in hyperalgesic pain, inflammatory infiltration, amylase and lipase secretion, and reactive oxygen species, TNF-α, and p65 NF-κB levels. These effects of cerulein-induced AP were abolished by Phα1ß and its recombinant form CTK 01512-2, whereas ω-conotoxin MVIIA had no effect on the induced increase in pancreatic enzyme secretion. Our results demonstrate that Phα1ß and CTK 01512-2 toxins-antagonists of HVCCs and TRPA1 receptor presented an effective response profile, in the control of nociception and inflammatory process in the AP model in rats, without causing changes in spontaneous locomotion of the rats.


Subject(s)
Abdominal Pain/prevention & control , Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Hyperalgesia/prevention & control , Pain Threshold/drug effects , Pancreatitis/prevention & control , Abdominal Pain/etiology , Abdominal Pain/metabolism , Abdominal Pain/physiopathology , Animals , Behavior, Animal/drug effects , Calcium Channels/metabolism , Calcium Signaling/drug effects , Ceruletide , Disease Models, Animal , Exploratory Behavior/drug effects , Hyperalgesia/etiology , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Inflammation Mediators/metabolism , Male , Neuropeptides/pharmacology , Pancreas/drug effects , Pancreas/metabolism , Pancreatitis/chemically induced , Pancreatitis/metabolism , Pancreatitis/physiopathology , Rats, Wistar , Spider Venoms/pharmacology , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/physiopathology , omega-Conotoxins/pharmacology
2.
Neuropharmacology ; 162: 107826, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31647972

ABSTRACT

Capsaicin, an agonist of TRPV1, evokes intracellular [Ca2+] transients and glutamate release from perfused trigeminal ganglion. The spider toxin PnTx3-5, native or recombinant is more potent than the selective TRPV1 blocker SB-366791 with IC50 of 47 ±â€¯0.18 nM, 45 ±â€¯1.18 nM and 390 ±â€¯5.1 nM in the same experimental conditions. PnTx3-5 is thus more potent than the selective TRPV1 blocker SB-366791. PnTx3-5 (40 nM) and SB-366791 (3 µM) also inhibited the capsaicin-induced increase in intracellular Ca2+ in HEK293 cells transfected with TRPV1 by 75 ±â€¯16% and 84 ±â€¯3.2%, respectively. In HEK293 cells transfected with TRPA1, cinnamaldehyde (30 µM) generated an increase in intracellular Ca2+ that was blocked by the TRPA1 antagonist HC-030031 (10 µM, 89% inhibition), but not by PnTx3-5 (40 nM), indicating selectivity of the toxin for TRPV1. In whole-cell patch-clamp experiments on HEK293 cells transfected with TRPV1, capsaicin (10 µM) generated inward currents that were blocked by SB-366791 and by both native and recombinant PnTx3-5 by 47 ±â€¯1.4%; 54 ±â€¯7.8% and 56 ±â€¯9.0%, respectively. Intradermal injection of capsaicin into the rat left vibrissa induced nociceptive behavior that was blocked by pre-injection with either SB-366791 (3 nmol/site i.d., 83.3 ±â€¯7.2% inhibition) or PnTx3-5 (100 fmol/site, 89 ±â€¯8.4% inhibition). We conclude that both native and recombinant PnTx3-5 are potent TRPV1 receptor antagonists with antinociceptive action on pain behavior evoked by capsaicin.


Subject(s)
Calcium Signaling/drug effects , Capsaicin/pharmacology , Facial Pain/metabolism , Neuropeptides/pharmacology , Nociception/drug effects , Sensory System Agents/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Trigeminal Ganglion/drug effects , Acrolein/analogs & derivatives , Acrolein/pharmacology , Anilides/pharmacology , Animals , Calcium/metabolism , Cinnamates/pharmacology , Disease Models, Animal , Glutamic Acid/drug effects , Glutamic Acid/metabolism , HEK293 Cells , Humans , Inhibitory Concentration 50 , Male , Patch-Clamp Techniques , Rats , TRPA1 Cation Channel/drug effects , TRPA1 Cation Channel/genetics , TRPV Cation Channels/genetics , Transfection , Trigeminal Ganglion/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...