Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Methods ; 175: 105997, 2020 08.
Article in English | MEDLINE | ID: mdl-32645339

ABSTRACT

2,4-Dichlorophenoxyacetic acid (2,4-D) has been widely used as a herbicide for agricultural purposes. Currently, the available methods for detecting 2,4-D require multi-step sample preparations and expensive instruments. The use of a whole cell biosensor is an interesting approach that is straightforward and simple to use. In this study, we constructed a genetic-based Agrobacterium tumefaciens biosensor based on a cadA promoter and cadR regulator from Bradyrhizobium sp. strain HW13 (2,4-D degrader) with a formylglycine generating enzyme (FGE)-sulfatase as the reporter gene. The performance of the biosensor was further improved through direct evolution of the cadR activator. The detection limit of cadR mutants for phenoxyacetic acid herbicides including 2,4-D and 4-Chlorophenoxyacetic acid (4-CPAA) were 1.56 µM (an eight-fold improvement compared to wild-type CadR). The biosensor could detect 2,4-D contamination in environmental samples without encountering interference from other complex compounds. The Agrobacterium biosensor was also stable after storing in a simple Luria-Bertani (LB) medium at 4 °C for 30 days where the activity remained at 82% when exposed to 100 µM of 2,4-D. This novel biosensor, with its high stability under simple storage conditions, exhibits promising potential to be used as an inexpensive and easy-to-use tool to screen for 2,4-D contamination in environmental sources.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/analysis , Agrobacterium tumefaciens/metabolism , Biosensing Techniques/methods , Environmental Monitoring/methods , Herbicides/analysis , Water Pollutants, Chemical/analysis , Sulfatases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...