Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Article in English | MEDLINE | ID: mdl-38502541

ABSTRACT

RATIONALE: Respiratory syncytial virus (RSV) is a common global respiratory virus increasingly recognized as a major pathogen in frail older adults and as a cause of chronic obstructive pulmonary disease (COPD) exacerbations. There is no single test for RSV in adults with acceptable diagnostic accuracy. Trials of RSV vaccines have recently shown excellent safety and efficacy against RSV in older adults; defining the frequency of RSV-related community infections and COPD exacerbations is important for vaccine deployment decisions. OBJECTIVES: This prospective study aimed to establish the frequency of outpatient-managed RSV-related exacerbations of COPD in two well-characterized patient cohorts using a combination of diagnostic methods. METHODS: Participants were recruited at specialist clinics in London, UK and Groningen, NL from 2017 and observed for three consecutive RSV seasons, during exacerbations and at least twice yearly. RSV infections were detected by reverse transcription-polymerase chain reaction (RT-PCR) and serologic testing. MEASUREMENTS AND MAIN RESULTS: 377 patients with COPD attended 1,999 clinic visits and reported 310 exacerbations. There were 27 RSV-related exacerbations (8·7% of total); of these, seven were detected only on PCR, 16 only on serology and 4 by both methods. Increases in RSV specific N-protein antibody were as sensitive as antibody to pre-F or post-F for serodiagnosis of RSV related exacerbations. CONCLUSIONS: RSV is associated with 8.7% of outpatient managed COPD exacerbations in this study. Antibodies to RSV-N protein may have diagnostic value, potentially important in a vaccinated population. The introduction of vaccines that prevent RSV is expected to benefit patients with COPD. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

2.
Am J Respir Crit Care Med ; 209(10): 1208-1218, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38175920

ABSTRACT

Rationale: Chronic obstructive pulmonary disease (COPD) due to tobacco smoking commonly presents when extensive lung damage has occurred. Objectives: We hypothesized that structural change would be detected early in the natural history of COPD and would relate to loss of lung function with time. Methods: We recruited 431 current smokers (median age, 39 yr; 16 pack-years smoked) and recorded symptoms using the COPD Assessment Test (CAT), spirometry, and quantitative thoracic computed tomography (QCT) scans at study entry. These scan results were compared with those from 67 never-smoking control subjects. Three hundred sixty-eight participants were followed every six months with measurement of postbronchodilator spirometry for a median of 32 months. The rate of FEV1 decline, adjusted for current smoking status, age, and sex, was related to the initial QCT appearances and symptoms, measured using the CAT. Measurements and Main Results: There were no material differences in demography or subjective CT appearances between the young smokers and control subjects, but 55.7% of the former had CAT scores greater than 10, and 24.2% reported chronic bronchitis. QCT assessments of disease probability-defined functional small airway disease, ground-glass opacification, bronchovascular prominence, and ratio of small blood vessel volume to total pulmonary vessel volume were increased compared with control subjects and were all associated with a faster FEV1 decline, as was a higher CAT score. Conclusions: Radiological abnormalities on CT are already established in young smokers with normal lung function and are associated with FEV1 loss independently of the impact of symptoms. Structural abnormalities are present early in the natural history of COPD and are markers of disease progression. Clinical trial registered with www.clinicaltrials.gov (NCT03480347).


Subject(s)
Lung , Pulmonary Disease, Chronic Obstructive , Spirometry , Tomography, X-Ray Computed , Adult , Female , Humans , Male , Middle Aged , Young Adult , Disease Progression , Forced Expiratory Volume/physiology , Lung/physiopathology , Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Smokers/statistics & numerical data , Smoking/adverse effects , Smoking/physiopathology , Case-Control Studies
3.
Curr Opin Pulm Med ; 30(2): 136-140, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38099447

ABSTRACT

PURPOSE OF REVIEW: Chronic obstructive pulmonary disease (COPD) is preventable disease and yet it remains the third greatest cause of death worldwide. This review focuses on recent updates in COPD research which have had an impact on our understanding of the epidemiology and pathophysiology of COPD. RECENT FINDINGS: Epidemiological studies of COPD have moved towards trying to understand the global impact of COPD particularly in low- and middle-income countries where disease prevalence continues to increase. In addition, we are beginning to uncover the impact of air pollution on COPD development with recent work showing a relationship between air pollution and COPD exacerbations. Advances in understanding early origins and early development of COPD have the potential to intervene earlier in the disease course to prevent disease progression. Although biomarkers such as peripheral blood eosinophilia have led to trials of biologic agents in COPD suggesting we may be entering an exciting new biologic era in COPD. SUMMARY: Recent advances suggest there may be a relationship between air pollution and COPD exacerbations. This requires further research to influence environmental policy. New clinical trials of biologics targeting TH2 inflammation in COPD suggest that targeted treatments with biologics may be a possibility COPD.


Subject(s)
Air Pollution , Biological Products , Pulmonary Disease, Chronic Obstructive , Humans , Disease Progression , Inflammation/complications , Biological Products/therapeutic use
4.
Genome Biol Evol ; 15(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37399326

ABSTRACT

Highly abundant proteins tend to evolve slowly (a trend called E-R anticorrelation), and a number of hypotheses have been proposed to explain this phenomenon. The misfolding avoidance hypothesis attributes the E-R anticorrelation to the abundance-dependent toxic effects of protein misfolding. To avoid these toxic effects, protein sequences (particularly those of highly expressed proteins) would be under selection to fold properly. One prediction of the misfolding avoidance hypothesis is that highly abundant proteins should exhibit high thermostability (i.e., a highly negative free energy of folding, ΔG). Thus far, only a handful of analyses have tested for a relationship between protein abundance and thermostability, producing contradictory results. These analyses have been limited by 1) the scarcity of ΔG data, 2) the fact that these data have been obtained by different laboratories and under different experimental conditions, 3) the problems associated with using proteins' melting energy (Tm) as a proxy for ΔG, and 4) the difficulty of controlling for potentially confounding variables. Here, we use computational methods to compare the free energy of folding of pairs of human-mouse orthologous proteins with different expression levels. Even though the effect size is limited, the most highly expressed ortholog is often the one with a more negative ΔG of folding, indicating that highly expressed proteins are often more thermostable.


Subject(s)
Protein Folding , Proteins , Animals , Humans , Mice , Proteins/genetics , Proteins/metabolism
5.
Chest ; 164(4): 875-884, 2023 10.
Article in English | MEDLINE | ID: mdl-37419145

ABSTRACT

BACKGROUND: Inhaled corticosteroids (ICS) increase the risk of pneumonia in COPD and commonly are used in patients with COPD-bronchiectasis overlap. RESEARCH QUESTION: Is the risk of pneumonia associated with ICS further heightened in COPD-bronchiectasis? STUDY DESIGN AND METHODS: Electronic health care records (from 2004-2019) were used to obtain a cohort of patients with COPD and a nested case-control group (age and sex matched 1:4). Analyses were conducted to determine the risk of hospitalization for pneumonia in COPD associated with ICS use in those with bronchiectasis. Findings were confirmed by several sensitivity analyses. Additionally, a smaller nested case-control group containing only patients with COPD-bronchiectasis overlap and those with recent blood eosinophil counts (BECs) was used to determine any association with BEC. RESULTS: Three hundred sixteen thousand six hundred sixty-three patients were eligible for the COPD cohort; bronchiectasis significantly increased the risk of pneumonia (adjusted hazard ratio, 1.24; 95% CI, 1.15-1.33). In the first nested case-control group of 84,316 patients with COPD, ICS was found to increase the odds of pneumonia (adjusted OR [AOR], 1.26; 95% CI, 1.19-1.32) only if used in the previous 180 days. However, bronchiectasis was a significant modifier such that ICS use did not augment further the already elevated bronchiectasis-associated pneumonia risk (COPD-bronchiectasis: AOR, 1.01; 95% CI, 0.8-1.28; no bronchiectasis: AOR, 1.27; 95% CI, 1.20-1.34). Several sensitivity analyses and a second smaller nested case-control group confirmed these findings. Finally, we found that BEC modified the ICS-associated pneumonia risk in COPD-bronchiectasis overlap, where lower BEC was associated significantly with pneumonia (BEC ≤ 3 × 109/L: AOR, 1.56; 95% CI, 1.05-2.31; BEC > 3 × 109/L: AOR, 0.89; 95% CI, 0.53-1.24). INTERPRETATION: ICS use does not augment further the already increased risk of hospitalization for pneumonia associated with concomitant bronchiectasis in patients with COPD.


Subject(s)
Bronchiectasis , Glucocorticoids , Pneumonia , Pulmonary Disease, Chronic Obstructive , Humans , Administration, Inhalation , Bronchiectasis/complications , Bronchiectasis/drug therapy , Bronchiectasis/epidemiology , Case-Control Studies , Pneumonia/chemically induced , Pneumonia/epidemiology , Pneumonia/etiology , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/epidemiology , United Kingdom/epidemiology , Glucocorticoids/administration & dosage , Glucocorticoids/adverse effects , Glucocorticoids/therapeutic use , Retrospective Studies , England/epidemiology
6.
Lancet Respir Med ; 11(5): 415-424, 2023 05.
Article in English | MEDLINE | ID: mdl-36528039

ABSTRACT

BACKGROUND: COVID-19 has overwhelmed health services globally. Oral antiviral therapies are licensed worldwide, but indications and efficacy rates vary. We aimed to evaluate the safety and efficacy of oral favipiravir in patients hospitalised with COVID-19. METHODS: We conducted a multicentre, open-label, randomised controlled trial of oral favipiravir in adult patients who were newly admitted to hospital with proven or suspected COVID-19 across five sites in the UK (n=2), Brazil (n=2) and Mexico (n=1). Using a permuted block design, eligible and consenting participants were randomly assigned (1:1) to receive oral favipiravir (1800 mg twice daily for 1 day; 800 mg twice daily for 9 days) plus standard care, or standard care alone. All caregivers and patients were aware of allocation and those analysing data were aware of the treatment groups. The prespecified primary outcome was the time from randomisation to recovery, censored at 28 days, which was assessed using an intention-to-treat approach. Post-hoc analyses were used to assess the efficacy of favipiravir in patients aged younger than 60 years, and in patients aged 60 years and older. The trial was registered with clinicaltrials.gov, NCT04373733. FINDINGS: Between May 5, 2020 and May 26, 2021, we assessed 503 patients for eligibility, of whom 499 were randomly assigned to favipiravir and standard care (n=251) or standard care alone (n=248). There was no significant difference between those who received favipiravir and standard care, relative to those who received standard care alone in time to recovery in the overall study population (hazard ratio [HR] 1·06 [95% CI 0·89-1·27]; n=499; p=0·52). Post-hoc analyses showed a faster rate of recovery in patients younger than 60 years who received favipiravir and standard care versus those who had standard care alone (HR 1·35 [1·06-1·72]; n=247; p=0·01). 36 serious adverse events were observed in 27 (11%) of 251 patients administered favipiravir and standard care, and 33 events were observed in 27 (11%) of 248 patients receiving standard care alone, with infectious, respiratory, and cardiovascular events being the most numerous. There was no significant between-group difference in serious adverse events per patient (p=0·87). INTERPRETATION: Favipiravir does not improve clinical outcomes in all patients admitted to hospital with COVID-19, however, patients younger than 60 years might have a beneficial clinical response. The indiscriminate use of favipiravir globally should be cautioned, and further high-quality studies of antiviral agents, and their potential treatment combinations, are warranted in COVID-19. FUNDING: LifeArc and CW+.


Subject(s)
COVID-19 , Adult , Humans , Middle Aged , Aged , SARS-CoV-2 , Treatment Outcome , Pyrazines/therapeutic use
7.
Nature ; 609(7928): 728-733, 2022 09.
Article in English | MEDLINE | ID: mdl-35940206

ABSTRACT

On the evening of 15 January 2022, the Hunga Tonga-Hunga Ha'apai volcano1 unleashed a violent underwater eruption, blanketing the surrounding land masses in ash and debris2,3. The eruption generated tsunamis observed around the world. An event of this type last occurred in 1883 during the eruption of Krakatau4, and thus we have the first observations of a tsunami from a large emergent volcanic eruption captured with modern instrumentation. Here we show that the explosive eruption generated waves through multiple mechanisms, including: (1) air-sea coupling with the initial and powerful shock wave radiating out from the explosion in the immediate vicinity of the eruption; (2) collapse of the water cavity created by the underwater explosion; and (3) air-sea coupling with the air-pressure pulse that circled the Earth several times, leading to a global tsunami. In the near field, tsunami impacts are strongly controlled by the water-cavity source whereas the far-field tsunami, which was unusually persistent, can be largely described by the air-pressure pulse mechanism. Catastrophic damage in some harbours in the far field was averted by just tens of centimetres, implying that a modest sea level rise combined with a future, similar event would lead to a step-function increase in impacts on infrastructure. Piecing together the complexity of this event has broad implications for coastal hazards in similar geophysical settings, suggesting a currently neglected source of global tsunamis.

8.
PLoS One ; 17(7): e0269244, 2022.
Article in English | MEDLINE | ID: mdl-35776718

ABSTRACT

A number of studies have highlighted physiological data from the first surge in critically unwell Covid-19 patients but there is a paucity of data describing emerging variants of SARS-CoV-2, such as B.1.1.7. We compared ventilatory parameters, biochemical and physiological data and mortality between the first and second COVID-19 surges in the United Kingdom, where distinct variants of SARS-CoV-2 were the dominant stain. We performed a retrospective cohort study investigating critically unwell patients admitted with COVID-19 across three tertiary regional ICUs in London, UK. Of 1782 adult ICU patients screened, 330 intubated and ventilated patients diagnosed with COVID-19 were included. In the second wave where B.1.1.7 variant was the dominant strain, patients were had increased severity of ARDS whilst compliance was greater (p<0.05) and d-dimer lower. The 28-day mortality was not statistically significant (1st wave: 42.2% vs 2nd wave: 39.8%). However, when adjusted for key covariates, the hazard ratio for 28-day mortality in those patients with B.1.1.7 was 3.79 (CI 1.04-13.8; p = 0.043) compared to the original strain. During the second surge in the UK, where the COVID-19 variant B.1.1.7 was most prevalent, significantly more patients presented to critical care with severe ARDS. Furthermore, mortality risk was significantly greater in our ICU population during the second wave of the pandemic in those patients with B.1.1.7. As ICUs are experiencing further waves (particularly by the delta (B.1.617.2) variant), we highlight the urgent need for prospective studies describing immunological and pathophysiological differences across novel emerging variants.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Adult , Critical Care , Humans , Prospective Studies , Retrospective Studies , SARS-CoV-2
9.
BMC Ecol Evol ; 22(1): 61, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538412

ABSTRACT

BACKGROUND: An accurate timescale of evolutionary history is essential to testing hypotheses about the influence of historical events and processes, and the timescale for evolution is increasingly derived from analysis of DNA sequences. But variation in the rate of molecular evolution complicates the inference of time from DNA. Evidence is growing for numerous factors, such as life history and habitat, that are linked both to the molecular processes of mutation and fixation and to rates of macroevolutionary diversification. However, the most widely used methods rely on idealised models of rate variation, such as the uncorrelated and autocorrelated clocks, and molecular dating methods are rarely tested against complex models of rate change. One relationship that is not accounted for in molecular dating is the potential for interaction between molecular substitution rates and speciation, a relationship that has been supported by empirical studies in a growing number of taxa. If these relationships are as widespread as current evidence suggests, they may have a significant influence on molecular dates. RESULTS: We simulate phylogenies and molecular sequences under three different realistic rate variation models-one in which speciation rates and substitution rates both vary but are unlinked, one in which they covary continuously and one punctuated model in which molecular change is concentrated in speciation events, using empirical case studies to parameterise realistic simulations. We test three commonly used "relaxed clock" molecular dating methods against these realistic simulations to explore the degree of error in molecular dates under each model. We find average divergence time inference errors ranging from 12% of node age for the unlinked model when reconstructed under an uncorrelated rate prior using BEAST 2, to up to 91% when sequences evolved under the punctuated model are reconstructed under an autocorrelated prior using PAML. CONCLUSIONS: We demonstrate the potential for substantial errors in molecular dates when both speciation rates and substitution rates vary between lineages. This study highlights the need for tests of molecular dating methods against realistic models of rate variation generated from empirical parameters and known relationships.


Subject(s)
Evolution, Molecular , Phylogeny , Reproducibility of Results , Time
11.
J Mol Evol ; 90(2): 200-214, 2022 04.
Article in English | MEDLINE | ID: mdl-35262772

ABSTRACT

Understanding the factors that drive diversification of taxa across the tree of life is a key focus of macroevolutionary research. While the effects of life history, ecology, climate and geography on diversity have been studied for many taxa, the relationship between molecular evolution and diversification has received less attention. However, correlations between rates of molecular evolution and diversification rate have been detected in a range of taxa, including reptiles, plants and birds. A correlation between rates of molecular evolution and diversification rate is a prediction of several evolutionary theories, including the evolutionary speed hypothesis which links variation in mutation rates to differences in speciation rates. If it is widespread, such correlations could also have significant practical impacts, if they are not adequately accounted for in phylogenetic inference of evolutionary rates and timescales. Ray-finned fish (Actinopterygii) offer a prime target to test for this relationship due to their extreme variation in clade size suggesting a wide range of diversification rates. We employ both a sister-pairs approach and a whole-tree approach to test for correlations between substitution rate and net diversification. We also collect life history and ecological trait data and account for potential confounding factors including body size, latitude, max depth and reef association. We find evidence to support a relationship between diversification and synonymous rates of nuclear evolution across two published backbone phylogenies, as well as weak evidence for a relationship between mitochondrial nonsynonymous rates and diversification at the genus level.


Subject(s)
Evolution, Molecular , Genetic Speciation , Animals , Biological Evolution , Birds/genetics , Fishes/genetics , Phylogeny
13.
Nat Ecol Evol ; 6(2): 163-173, 2022 02.
Article in English | MEDLINE | ID: mdl-34916621

ABSTRACT

Language diversity is under threat. While each language is subject to specific social, demographic and political pressures, there may also be common threatening processes. We use an analysis of 6,511 spoken languages with 51 predictor variables spanning aspects of population, documentation, legal recognition, education policy, socioeconomic indicators and environmental features to show that, counter to common perception, contact with other languages per se is not a driver of language loss. However, greater road density, which may encourage population movement, is associated with increased endangerment. Higher average years of schooling is also associated with greater endangerment, evidence that formal education can contribute to loss of language diversity. Without intervention, language loss could triple within 40 years, with at least one language lost per month. To avoid the loss of over 1,500 languages by the end of the century, urgent investment is needed in language documentation, bilingual education programmes and other community-based programmes.


Subject(s)
Language , Linguistics
14.
ERJ Open Res ; 7(4)2021 Oct.
Article in English | MEDLINE | ID: mdl-34820444

ABSTRACT

Impact of the UK lockdown on early COPD https://bit.ly/3laMsmi.

15.
Am J Respir Crit Care Med ; 204(9): 1075-1085, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34319857

ABSTRACT

Rationale: Chronic obstructive pulmonary disease (COPD) is a condition punctuated by acute exacerbations commonly triggered by viral and/or bacterial infection. Early identification of exacerbation triggers is important to guide appropriate therapy, but currently available tests are slow and imprecise. Volatile organic compounds (VOCs) can be detected in exhaled breath and have the potential to be rapid tissue-specific biomarkers of infection etiology. Objectives: To determine whether volatile organic compound measurement could distinguish viral from bacterial infection in COPD. Methods: We used serial sampling within in vitro and in vivo studies to elucidate the dynamic changes that occur in VOC production during acute respiratory viral infection. Highly sensitive gas chromatography-mass spectrometry techniques were used to measure VOC production from infected airway epithelial-cell cultures and in exhaled breath samples from healthy subjects experimentally challenged with rhinovirus (RV)-A16 and from subjects with COPD with naturally occurring exacerbations. Measurements and Main Results: We identified a novel VOC signature comprising decane and other long-chain alkane compounds that is induced during RV infection of cultured airway epithelial cells and is also increased in the exhaled breath from healthy subjects experimentally challenged with RV and from patients with COPD during naturally occurring viral exacerbations. These compounds correlated with the magnitude of antiviral immune responses, viral burden, and exacerbation severity but were not induced by bacterial infection, suggesting that they represent a specific virus-inducible signature. Conclusions: Our study highlights the potential for measurement of exhaled breath VOCs as rapid, noninvasive biomarkers of viral infection. Further studies are needed to determine whether measurement of these signatures could be used to guide more targeted therapy with antibiotic/antiviral agents for COPD exacerbations.


Subject(s)
Biomarkers/analysis , Breath Tests/methods , Early Diagnosis , Picornaviridae Infections/diagnosis , Picornaviridae Infections/physiopathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Volatile Organic Compounds/analysis , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
16.
BMC Ecol Evol ; 21(1): 39, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33691618

ABSTRACT

BACKGROUND: Recovering the historical patterns of selection acting on a protein coding sequence is a major goal of evolutionary biology. Mutation-selection models address this problem by explicitly modelling fixation rates as a function of site-specific amino acid fitness values.However, they are restricted in their utility for investigating directional evolution because they require prior knowledge of the locations of fitness changes in the lineages of a phylogeny. RESULTS: We apply a modified mutation-selection methodology that relaxes assumptions of equlibrium and time-reversibility. Our implementation allows us to identify branches where adaptive or compensatory shifts in the fitness landscape have taken place, signalled by a change in amino acid fitness profiles. Through simulation and analysis of an empirical data set of [Formula: see text]-lactamase genes, we test our ability to recover the position of adaptive events within the tree and successfully reconstruct initial codon frequencies and fitness profile parameters generated under the non-stationary model. CONCLUSION: We demonstrate successful detection of selective shifts and identification of the affected branch on partitions of 300 codons or more. We successfully reconstruct fitness parameters and initial codon frequencies in simulated data and demonstrate that failing to account for non-equilibrium evolution can increase the error in fitness profile estimation. We also demonstrate reconstruction of plausible shifts in amino acid fitnesses in the bacterial [Formula: see text]-lactamase family and discuss some caveats for interpretation.


Subject(s)
Models, Genetic , Selection, Genetic , Codon/genetics , Evolution, Molecular , Mutation
18.
Clin Chest Med ; 41(3): 421-438, 2020 09.
Article in English | MEDLINE | ID: mdl-32800196

ABSTRACT

Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are episodes of symptom worsening which have significant adverse consequences for patients. Exacerbations are highly heterogeneous events associated with increased airway and systemic inflammation and physiological changes. The frequency of exacerbations is associated with accelerated lung function decline, quality of life impairment and increased mortality. They are triggered predominantly by respiratory viruses and bacteria, which infect the lower airway and increase airway inflammation. A proportion of patients appear to be more susceptible to exacerbations, with poorer quality of life and more aggressive disease progression than those who have infrequent exacerbations. Exacerbations also contribute significantly to healthcare expenditure. Prevention and mitigation of exacerbations are therefore key goals of COPD management.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Quality of Life/psychology , Disease Progression , Humans , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/therapy
19.
Ann Am Thorac Soc ; 17(10): 1186-1194, 2020 10.
Article in English | MEDLINE | ID: mdl-32692580

ABSTRACT

The rapid global spread and significant mortality associated with the coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection has spurred an urgent race to find effective treatments. Repurposing existing drugs is a particularly attractive approach as pharmacokinetic and safety data already exist; thus, development can leapfrog straight to clinical trials of efficacy, generating results far more quickly than de novo drug development. This review summarizes the state of play for the principle drugs identified as candidates to be repurposed for treating COVID-19 grouped by broad mechanism of action: antiviral, immune enhancing, and antiinflammatory or immunomodulatory. Patient selection, particularly with regard to disease stage, is likely to be key. To date, only dexamethasone and remdesivir have been shown to be effective, but several other promising candidates are in trials.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections , Immunologic Factors/pharmacology , Pandemics , Pneumonia, Viral , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Drug Discovery/methods , Drug Repositioning/methods , Humans , Patient Selection , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...