Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Biol Rhythms ; 39(1): 35-48, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37539684

ABSTRACT

Prior research indicates that sleep restriction, sleep deprivation, and circadian misalignment diminish positive affect, whereas effects on negative affect are inconsistent. One potential factor that may influence an individual's affective response to sleep restriction, sleep deprivation, and circadian misalignment is chronotype. Later chronotypes generally report higher negative affect and lower positive affect under typical sleep conditions; however, there is mixed evidence for an influence of chronotype on affective responses to sleep restriction and sleep deprivation. The present study examined the effect of chronotype on positive and negative affect during sleep restriction and subsequent total sleep deprivation. Sixteen healthy adults (Mage = 28.2 years, SDage = 11.6 years) were classified as earlier or later chronotypes using multiple chronotype definitions: morningness-eveningness (MEQ), mid-sleep on free days corrected (MSFsc), habitual mid-sleep timing, dim light melatonin onset (DLMO), and phase relationship between DLMO and bedtime. Participants completed a 10-day protocol with one night of sleep restriction and subsequent 28 h total sleep deprivation. Affect was assessed hourly during scheduled wakefulness with the Positive and Negative Affect Schedule (PANAS). Data were analyzed with mixed-model analyses of variance (ANOVAs). During sleep restriction and subsequent sleep deprivation, positive affect decreased and negative affect increased. Across all chronotype measures, relatively later chronotypes demonstrated vulnerability to increased negative affect during sleep loss. The influence of chronotype on positive affect during sleep loss varied by chronotype measure. These findings suggest later chronotypes are more vulnerable to affective impairments during sleep loss and circadian misalignment, even when late chronotype is not extreme.


Subject(s)
Melatonin , Sleep Deprivation , Adult , Humans , Child , Chronotype , Circadian Rhythm/physiology , Surveys and Questionnaires , Sleep/physiology
2.
Sleep Health ; 10(1S): S76-S83, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37777359

ABSTRACT

OBJECTIVES: Dim light melatonin onset, or the rise in melatonin levels representing the beginning of the biological night, is the gold standard indicator of circadian phase. Considerably less is known about dim light melatonin offset, or the decrease in melatonin to low daytime levels representing the end of the biological night. In the context of insufficient sleep, morning circadian misalignment, or energy intake after waketime but before dim light melatonin offset, is linked to impaired insulin sensitivity, suggesting the need to characterize dim light melatonin offset and identify risk for morning circadian misalignment. METHODS: We examined the distributions of dim light melatonin offset clock hour and the phase relationship between dim light melatonin offset and waketime, and associations between dim light melatonin offset, phase relationship, and chronotype in healthy adults (N = 62) who completed baseline protocols measuring components of the circadian melatonin rhythm and chronotype. RESULTS: 74.4% demonstrated dim light melatonin offset after waketime, indicating most healthy adults wake up before the end of biological night. Later chronotype (morningness-eveningness, mid-sleep on free days corrected, and average mid-sleep) was associated with later dim light melatonin offset clock hour. Later chronotype was also associated with a larger, positive phase relationship between dim light melatonin offset and waketime, except for morningness-eveningness. CONCLUSIONS: These findings suggest morning circadian misalignment risk among healthy adults, which would not be detected if only dim light melatonin onset were assessed. Chronotype measured by sleep timing may better predict this risk in healthy adults keeping a consistent sleep schedule than morningness-eveningness preferences. Additional research is needed to develop circadian biomarkers to predict dim light melatonin offset and evaluate appropriate dim light melatonin offset timing to promote health.

4.
J Physiol ; 600(7): 1607-1608, 2022 04.
Article in English | MEDLINE | ID: mdl-35211966
5.
Nutrients ; 12(3)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32182981

ABSTRACT

Increased risk of obesity and diabetes in shift workers may be related to food intake at adverse circadian times. Early morning shiftwork represents the largest proportion of shift workers in the United States, yet little is known about the impact of food intake in the early morning on metabolism. Eighteen participants (9 female) completed a counterbalanced 16 day design with two conditions separated by ~1 week: 8 h sleep opportunity at habitual time and simulated early morning shiftwork with 6.5 h sleep opportunity starting ~1 h earlier than habitual time. After wake time, resting energy expenditure (REE) was measured and blood was sampled for melatonin and fasting glucose and insulin. Following breakfast, post-prandial blood samples were collected every 40 min for 2 h and the thermic effect of food (TEF) was assessed for 3.25 h. Total sleep time was decreased by ~85 min (p < 0.0001), melatonin levels were higher (p < 0.0001) and post-prandial glucose levels were higher (p < 0.05) after one day of simulated early morning shiftwork compared with habitual wake time. REE was lower after simulated early morning shiftwork; however, TEF after breakfast was similar to habitual wake time. Insufficient sleep and caloric intake during a circadian phase of high melatonin levels may contribute to metabolic dysregulation in early morning shift workers.


Subject(s)
Circadian Rhythm/physiology , Eating/physiology , Sleep/physiology , Wakefulness/physiology , Work Schedule Tolerance/physiology , Adult , Blood Glucose/analysis , Energy Intake/physiology , Energy Metabolism , Fasting/blood , Female , Humans , Insulin/blood , Male , Melatonin/blood , Polysomnography , Postprandial Period , Risk Factors , Time Factors , United States , Young Adult
6.
Sleep ; 42(8)2019 08 01.
Article in English | MEDLINE | ID: mdl-31070769

ABSTRACT

STUDY OBJECTIVES: Determine stability of individual differences in executive function, cognitive processing speed, selective visual attention, and maintenance of wakefulness during simulated sustained operations with combined sleep restriction and circadian misalignment. METHODS: Twenty healthy adults (eight female), aged 25.7 (±4.2 SD), body mass index (BMI) 22.3 (±2.1) kg/m2 completed an 18-day protocol twice. Participants maintained habitual self-selected 8-hour sleep schedules for 2 weeks at home prior to a 4-day laboratory visit that included one sleep opportunity per day: 8 hours on night 1, 3 hours on night 2, and 3 hours on mornings 3 and 4. After 3 days of unscheduled sleep at home, participants repeated the entire protocol. Stability and task dependency of individual differences in performance were quantified by intra-class correlation coefficients (ICC) and Kendall's Tau, respectively. RESULTS: Performance on Stroop, Visual Search, and the Maintenance of Wakefulness Test were highly consistent within individuals during combined sleep restriction and circadian misalignment. Individual differences were trait-like as indicated by ICCs (0.54-0.96) classified according to standard criteria as moderate to almost perfect. Individual differences on other performance tasks commonly reported in sleep studies showed fair to almost perfect ICCs (0.22-0.94). Kendall's rank correlations showed that individual vulnerability to sleep restriction and circadian misalignment varied by task and by metric within a task. CONCLUSIONS: Consistent vulnerability of higher-order cognition and maintenance of wakefulness to combined sleep restriction and circadian misalignment has implications for the development of precision countermeasure strategies for workers performing safety-critical tasks, e.g. military, police, health care workers and emergency responders.


Subject(s)
Circadian Rhythm/physiology , Cognition/physiology , Psychomotor Performance/physiology , Sleep Deprivation/physiopathology , Sleep Disorders, Circadian Rhythm/physiopathology , Adult , Attention/physiology , Executive Function/physiology , Female , Humans , Individuality , Male , Polysomnography , Sleep/physiology , Task Performance and Analysis , Wakefulness/physiology
7.
Article in English | MEDLINE | ID: mdl-29876528

ABSTRACT

Daytime light exposure has been reported to impact or have no influence on energy metabolism in humans. Further, whether inter-individual differences in wake, sleep, 24 h energy expenditure, and RQ during circadian entrainment and circadian misalignment are stable across repeated 24 h assessments is largely unknown. We present data from two studies: Study 1 of 15 participants (7 females) exposed to three light exposure conditions: continuous typical room ~100 lx warm white light, continuous ~750 lx warm white light, and alternating hourly ~750 lx warm white and blue-enriched white light on three separate days in a randomized order; and Study 2 of 14 participants (8 females) during circadian misalignment induced by a simulated night shift protocol. Participants were healthy, free of medical disorders, medications, and illicit drugs. Participants maintained a consistent 8 h per night sleep schedule for one week as an outpatient prior to the study verified by wrist actigraphy, sleep diaries, and call-ins to a time stamped recorder. Participants consumed an outpatient energy balance research diet for three days prior to the study. The inpatient protocol for both studies consisted of an initial sleep disorder screening night. For study 1, this was followed by three standard days with 16 h scheduled wakefulness and 8 h scheduled nighttime sleep. For Study 2, it was followed by 16 h scheduled wake and 8 h scheduled sleep at habitual bedtime followed by three night shifts with 8 h scheduled daytime sleep. Energy expenditure was measured using whole-room indirect calorimetry. Constant posture bedrest conditions were maintained to control for energy expenditure associated with activity and the baseline energy balance diet was continued with the same exact meals across days to control for thermic effects of food. No significant impact of light exposure was observed on metabolic outcomes in response to daytime light exposure. Inter-individual variability in energy expenditure was systematic and ranged from substantial to almost perfect consistency during both nighttime sleep and circadian misalignment. Findings show robust and stable trait-like individual differences in whole body 24 h, waking, and sleep energy expenditure, 24 h respiratory quotient-an index of a fat and carbohydrate oxidation-during repeated assessments under entrained conditions, and also in 24 h and sleep energy expenditure during repeated days of circadian misalignment.

8.
J Sleep Res ; 26(5): 551-558, 2017 10.
Article in English | MEDLINE | ID: mdl-28378363

ABSTRACT

Sleep inertia is affected by circadian phase, with worse performance upon awakening from sleep during the biological night than biological day. Visual search/selective visual attention performance is known to be sensitive to sleep inertia and circadian phase. Individual differences exist in the circadian timing of habitual wake time, which may contribute to individual differences in sleep inertia. Because later chronotypes awaken at an earlier circadian phase, we hypothesized that later chronotypes would have worse visual search performance during sleep inertia than earlier chronotypes if awakened at habitual wake time. We analysed performance from 18 healthy participants [five females (22.1 ± 3.7 years; mean ± SD)] at ~1, 10, 20, 30, 40 and 60 min following electroencephalogram-verified awakening from an 8 h in-laboratory sleep opportunity. Cognitive throughput and reaction times of correct responses were impaired by sleep inertia and took ~10-30 min to improve after awakening. Regardless whether chronotype was defined by dim light melatonin onset or mid-sleep clock hour on free days, derived from the Munich ChronoType Questionnaire, the duration of sleep inertia for cognitive throughput and reaction times was longer for later chronotypes (n = 7) compared with earlier chronotypes (n = 7). Specifically, performance for earlier chronotypes showed significant improvement within ~10-20 min after awakening, whereas performance for later chronotypes took ~30 min or longer to show significant improvement (P < 0.05). Findings have implications for decision making immediately upon awakening from sleep, and are consistent with circadian theory suggesting that sleep inertia contributes to longer-lasting impairments in morning performance in later chronotypes.


Subject(s)
Attention/physiology , Circadian Rhythm/physiology , Cognition/physiology , Reaction Time/physiology , Sleep/physiology , Vision, Ocular/physiology , Wakefulness/physiology , Electroencephalography , Female , Humans , Individuality , Light , Male , Melatonin/biosynthesis , Melatonin/metabolism , Surveys and Questionnaires , Young Adult
9.
Curr Biol ; 27(4): 508-513, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28162893

ABSTRACT

Reduced exposure to daytime sunlight and increased exposure to electrical lighting at night leads to late circadian and sleep timing [1-3]. We have previously shown that exposure to a natural summer 14 hr 40 min:9 hr 20 min light-dark cycle entrains the human circadian clock to solar time, such that the internal biological night begins near sunset and ends near sunrise [1]. Here we show that the beginning of the biological night and sleep occur earlier after a week's exposure to a natural winter 9 hr 20 min:14 hr 40 min light-dark cycle as compared to the modern electrical lighting environment. Further, we find that the human circadian clock is sensitive to seasonal changes in the natural light-dark cycle, showing an expansion of the biological night in winter compared to summer, akin to that seen in non-humans [4-8]. We also show that circadian and sleep timing occur earlier after spending a weekend camping in a summer 14 hr 39 min:9 hr 21 min natural light-dark cycle compared to a typical weekend in the modern environment. Weekend exposure to natural light was sufficient to achieve ∼69% of the shift in circadian timing we previously reported after a week's exposure to natural light [1]. These findings provide evidence that the human circadian clock adapts to seasonal changes in the natural light-dark cycle and is timed later in the modern environment in both winter and summer. Further, we demonstrate that earlier circadian timing can be rapidly achieved through natural light exposure during a weekend spent camping.


Subject(s)
Circadian Clocks , Circadian Rhythm , Lighting , Sunlight , Adult , Female , Humans , Male , Seasons , Time Factors , Young Adult
10.
Curr Pharm Des ; 21(24): 3438-42, 2015.
Article in English | MEDLINE | ID: mdl-26144935

ABSTRACT

A robust circadian timekeeping system is important for human health and well-being. Inappropriately timed light exposure can cause circadian and sleep disruption, which has been shown to have negative health consequences. Lighting in medical care facilities, such as the NICU, ICU, and nursing homes, is not typically controlled and may be associated with circadian disruption observed in such settings. Cycled lighting and increased exposure to sunlight in medical care facilities have been shown to have positive effects on patient recovery and well-being, and expedite hospital discharge. Additional clinical research is needed to determine the optimal light exposure timing, duration, intensity, and spectrum to best promote recovery, health and well-being in the context of medical care.


Subject(s)
Circadian Clocks/physiology , Circadian Rhythm/physiology , Photoperiod , Chronobiology Disorders/complications , Chronobiology Disorders/epidemiology , Chronobiology Disorders/etiology , Humans , Intensive Care Units , Light , Lighting , Nursing Homes , Sleep Wake Disorders/complications , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...