Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1650: 462258, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34058594

ABSTRACT

This article describes the use of a new prototype column hardware made with 1.5 mm internal diameter (i.d.) and demonstrates some benefits over the 1.0 mm i.d. micro-bore column. The performance of 2.1, 1.5 and 1.0 mm i.d. columns were systematically compared. With the 1.5 mm i.d. column, the loss of apparent column efficiency can be significantly reduced compared to 1.0 mm i.d. columns in both isocratic and gradient elution modes. In the end, the 1.5 mm i.d. column is almost comparable to 2.1 mm i.d. column from a peak broadening point of view. The advantages of the 1.5 mm i.d. hardware vs 2.1 mm i.d. narrow-bore columns are the lower sample and solvent consumption, and reduced frictional heating effects due to decreased operating flow rates.


Subject(s)
Chromatography, Liquid , Chromatography, Liquid/economics , Chromatography, Liquid/instrumentation , Chromatography, Liquid/standards , Solvents
2.
J Chromatogr A ; 1642: 462050, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33735644

ABSTRACT

The article describes the development of new stationary phases for the analysis of proteins in reversed phase liquid chromatography (RPLC). The goal was to have columns offering high recovery at low temperature, low hydrophobicity and novel selectivity. For this purpose, three different ligands bound onto the surface of superficially porous silica-based particles were compared, including trimethyl-silane (C1), ethyl-dimethyl-silane (C2) and N-(trifluoroacetomidyl)-propyl-diisopropylsilane (ES-LH). These three phases were compared with two commercial RPLC phases. In terms of protein recovery, the new ES-LH stationary phase clearly outperforms the other phases for any type of biopharmaceutical sample, and can already be successfully used at a temperature of only 60°C. In terms of retention, the new ES-LH and C1 materials were the less retentive ones, requiring lower organic solvent in the mobile phase. However, it is important to mention that the stability of C1 phase was critical under acidic, high temperature conditions. Finally, some differences were observed in terms of selectivity, particularly for the ES-LH column. Besides the chemical nature of the stationary phase, it was found that the nature of organic modifier also plays a key role in selectivity.


Subject(s)
Antibodies, Monoclonal/analysis , Hydrophobic and Hydrophilic Interactions , Adsorption , Antibodies, Bispecific/analysis , Antibodies, Monoclonal, Humanized/analysis , Chromatography, Reverse-Phase , Porosity , Solvents , Temperature
3.
J Med Chem ; 61(21): 9395-9409, 2018 11 08.
Article in English | MEDLINE | ID: mdl-29873484

ABSTRACT

Kinetic target-guided synthesis (KTGS) is a powerful strategy in which the biological target selects its own inhibitors by assembling them from biocompatible reagents via an irreversible process. In this approach, the biological target accelerates the reaction between complementary building blocks by bringing them in close proximity and proper orientation. KTGS has found application on various targets. Herein, we performed a druggability assessment for each target family reported in KTGS, calculated the pocket properties, and used them to extract possible discriminating factors for successful KTGS studies. A trend for less enclosed pockets emerged, but overall we conclude that the KTGS approach is universal and could be used without restrictions regarding the physicochemical properties of the addressed pocket.


Subject(s)
Drug Discovery/methods , Molecular Targeted Therapy/methods , Animals , Humans , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...