Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 2(9)2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25214523

ABSTRACT

Adiponectin (Ad) is a potent insulin-sensitizing adipokine that has been found to activate pathways involved in the adaptation to exercise. Therefore, we examined whether Ad is required for the increased insulin response observed following exercise training in Ad knockout mice (AdKO). Eight weeks of exercise training significantly increased glucose and insulin tolerance in both wild type (WT) and AdKO mice. There were no differences in glucose tolerance between genotypes but insulin tolerance was improved to a greater extent in AdKO compared to WT mice following exercise training (+26%, P < 0.05). There were no genotype differences in the insulin-stimulated phosphorylation of AKT or AS160 in red or white gastrocnemius muscle (RG, WG). Exercise training increased total AKT and AS160 protein content in RG and total AS160 protein content in WG. There were no genotype differences in total AKT or AS160. However, exercise training induced a more robust increase in total AS160 in RG from AdKO (+44 ± 8%, P < 0.05) compared to WT mice (+28 ± 7%, P = 0.06). There were no differences in total GLUT4 or FAT/CD36 in RG or WG in WT or AdKO, with or without exercise training. Similarly, there were no differences in RER, VO2, or activity between any groups. Our results indicate the presence of Ad is not required for exercise-induced increases in insulin response. Furthermore, it appears that exercise may improve insulin sensitivity to a greater extent in the absence of Ad, suggesting the presence of an unknown compensatory mechanism.

2.
J Physiol ; 592(12): 2653-65, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24687585

ABSTRACT

Adiponectin (Ad) has been proposed to be a regulator of mitochondrial biogenesis in skeletal muscle, and necessary for exercise-induced increases in mitochondrial content. We first confirmed that Ad could acutely increase the expression of mitochondrial proteins during a 10 h incubation in isolated soleus and extensor digitorum longus (EDL) muscles. Next, we further examined the role of Ad as a regulator of mitochondrial content using Ad knockout (AdKO) mice. The AdKO animals showed no differences in resting VO2, respiratory exchange ratio, or in time to exhaustion during exercise when compared to wild-type (WT) mice. There was a reduction in resting palmitate oxidation in isolated soleus from AdKO animals (-23%, P < 0.05) but not EDL, and 5-aminoimidazole-4-carboxamide (AICAR)-stimulated palmitate oxidation was similar in both genotypes regardless of muscle. There were no differences in protein markers of mitochondrial content (COX4, CORE1, CS, PDHE1α) in red and white gastrocnemius between WT and AdKO animals. A single bout of treadmill running increased the phosphorylation of AMP-activated protein kinase (AMPK) and the mRNA expression of mitochondrial proteins in red and white gastrocnemius in both WT and AdKO animals, with no differences between genotypes. Finally, 8 weeks of chronic exercise training increased the protein content of mitochondrial markers similarly (∼25-35%) in red gastrocnemius from both WT and AdKO mice. Collectively, our results demonstrate that the absence of Ad is not accompanied by reductions in mitochondrial protein content, or a reduction in aerobic exercise capacity. We conclude that Ad is not required for the maintenance of mitochondrial content, or for exercise-induced increases in skeletal muscle mitochondrial proteins.


Subject(s)
Adiponectin/physiology , Mitochondrial Proteins/metabolism , Muscle, Skeletal/physiology , Running/physiology , AMP-Activated Protein Kinases/metabolism , Animals , Gene Expression/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
3.
PLoS One ; 7(12): e52193, 2012.
Article in English | MEDLINE | ID: mdl-23284930

ABSTRACT

A high fat (HF) diet rapidly impairs the ability of adiponectin (Ad) to stimulate fatty acid (FA) oxidation in oxidative soleus muscle, but the underlying mechanism remains elusive. Mere days of HF feeding also increase the muscle's production and accumulation of reactive oxygen species (ROS) and shift cellular redox to a more oxidized state. It seems plausible that this shift towards a more oxidized state might act as negative feedback to suppress the ability of Ad to stimulate FA oxidation and generate more ROS. Therefore, we sought to determine whether i) a shift towards a more oxidized redox state (reduction in GSH/2GSSG) coincided with impaired Ad-stimulated palmitate oxidation in oxidative and glycolytic rodent muscle after 5 days of HF feeding (60% kCal), and ii) if supplementation with the antioxidant, N-acetylcysteine (NAC) could prevent the HF-diet induced impairment in Ad-response. Globular Ad (gAd) increased palmitate oxidation in isolated soleus and EDL muscles by 42% and 34%, respectively (p<0.05) but this was attenuated with HF feeding in both muscles. HF feeding decreased total GSH (-26%, p<0.05) and GSH/2GSSG (-49%, p<0.05) in soleus, but not EDL. Supplementation with NAC prevented the HF diet-induced reductions in GSH and GSH/2GSSG in soleus, but did not prevent the loss of Ad response in either muscle. Furthermore, direct incubations with H(2)O(2) did not impair Ad-stimulated FA oxidation in either muscle. In conclusion, our data indicates that skeletal muscle Ad resistance is rapidly induced in both oxidative and glycolytic muscle, independently of altered cellular redox state.


Subject(s)
Adiponectin/pharmacology , Fatty Acids/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Animals , Blood Glucose/drug effects , Body Weight/drug effects , Diet, High-Fat/adverse effects , Female , Glutathione/metabolism , Lipid Metabolism/drug effects , Oxidation-Reduction/drug effects , Protein Carbonylation/drug effects , Rats , Rats, Sprague-Dawley
4.
Am J Physiol Regul Integr Comp Physiol ; 300(2): R492-500, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21084675

ABSTRACT

Leptin administration increases fatty acid (FA) oxidation rates and decreases lipid storage in oxidative skeletal muscle, thereby improving insulin response. We have previously shown high-fat (HF) diets to rapidly induce skeletal muscle leptin resistance, prior to the disruption of normal muscle FA metabolism (increase in FA transport; accumulation of triacylglycerol, diacylglycerol, ceramide) that occurs in advance of impaired insulin signaling and glucose transport. All of this occurs within a 4-wk period. Conversely, exercise can rapidly improve insulin response, in as little as one exercise bout. Thus, if the early development of leptin resistance is a contributor to HF diet-induced insulin resistance (IR) in skeletal muscle, then it is logical to predict that the rapid restoration of insulin response by exercise training would be preceded by the recovery of leptin response. In the current study, we sought to determine 1) whether 1, 2, or 4 wk of exercise training was sufficient to restore leptin response in isolated soleus muscle of rats already consuming a HF diet (60% kcal), and 2) whether this preceded the training-induced corrections in FA metabolism and improved insulin-stimulated glucose transport. In the low-fat (LF)-fed control group, insulin increased glucose transport by 153% and leptin increased AMPK and ACC phosphorylation and the rate of palmitate oxidation (+73%). These responses to insulin and leptin were either severely blunted or absent following 4 wk of HF feeding. Exercise intervention decreased muscle ceramide content (-28%) and restored insulin-stimulated glucose transport to control levels within 1 wk; muscle leptin response (AMPK and ACC phosphorylation, FA oxidation) was also restored, but not until the 2-wk time point. In conclusion, endurance exercise training is able to restore leptin response, but this does not appear to be a necessary precursor for the restoration of insulin response.


Subject(s)
Dietary Fats/pharmacology , Glucose/metabolism , Insulin/pharmacology , Leptin/pharmacology , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology , AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/metabolism , Animals , Biological Transport/drug effects , Blood Glucose/metabolism , Ceramides/metabolism , Diglycerides/biosynthesis , Diglycerides/metabolism , Fatty Acids/blood , Fatty Acids/metabolism , Female , Glucose Transporter Type 4/metabolism , Insulin/blood , Insulin Resistance/physiology , Leptin/blood , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/drug effects , Oxidation-Reduction , Palmitic Acid/metabolism , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Leptin/metabolism , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/metabolism , Triglycerides/biosynthesis , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...