Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17578, 2024.
Article in English | MEDLINE | ID: mdl-38948222

ABSTRACT

In the eastern coastal regions of Odisha, wilt caused by Fusarium oxysporum f. sp.capsici is an extremely damaging disease in chilli. This disease is very difficult to manage with chemical fungicides since it is soil-borne in nature. The natural rhizosphere soil of the chilli plant was used to isolate and test bacterial antagonists for their effectiveness and ability to promote plant growth. Out of the fifty-five isolates isolated from the rhizosphere of healthy chilli plants, five isolates, namely Iso 01, Iso 17, Iso 23, Iso 24, and Iso 32, showed their highly antagonistic activity against F. oxysporum f. sp. capsici under in vitro. In a dual culture, Iso 32 (73.3%) and Iso 24 (71.5%) caused the highest level of pathogen inhibition. In greenhouse trials, artificially inoculated chilli plants treated with Iso 32 (8.8%) and Iso 24 (10.2%) had decreased percent disease incidence (PDI), with percent disease reduction over control of 85.6% and 83.3%, respectively. Iso 32 and Iso 24 treated chilli seeds have shown higher seed vigor index of 973.7 and 948.8, respectively, as compared to untreated control 636.5. Furthermore, both the isolates significantly increased plant height as well as the fresh and dry weight of chilli plants under the rolled paper towel method. Morphological, biochemical, and molecular characterization identified Bacillus amyloliquefaciens (MH491049) as the key antagonist. This study demonstrates that rhizobacteria, specifically Iso 32 and Iso 24, can effectively protect chilli plants against Fusarium wilt while promoting overall plant development. These findings hold promise for sustainable and eco-friendly management of Fusarium wilt in chilli cultivation.


Subject(s)
Fusarium , Plant Diseases , Rhizosphere , Soil Microbiology , Fusarium/isolation & purification , Fusarium/pathogenicity , Fusarium/drug effects , Fusarium/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Capsicum/microbiology , Capsicum/growth & development , Antibiosis/physiology , Plant Development
2.
Front Microbiol ; 14: 1214680, 2023.
Article in English | MEDLINE | ID: mdl-37601357

ABSTRACT

In the current scenario, the use of synthetic fertilizers is at its peak, which is an expensive affair, possesses harmful effects to the environment, negatively affecting soil fertility and beneficial soil microfauna as well as human health. Because of this, the demand for natural, chemical-free, and organic foods is increasing day by day. Therefore, in the present circumstances use of biofertilizers for plant growth-promotion and microbe-based biopesticides against biotic stresses are alternative options to reduce the risk of both synthetic fertilizers and pesticides. The plant growth promoting rhizobacteria (PGPR) and microbial biocontrol agents are ecologically safe and effective. Owning their beneficial properties on plant systems without harming the ecosystem, they are catching the widespread interest of researchers, agriculturists, and industrialists. In this context, the genus Stenotrophomonas is an emerging potential source of both biofertilizer and biopesticide. This genus is particularly known for producing osmoprotective substances which play a key role in cellular functions, i.e., DNA replication, DNA-protein interactions, and cellular metabolism to regulate the osmotic balance, and also acts as effective stabilizers of enzymes. Moreover, few species of this genus are disease causing agents in humans that is why; it has become an emerging field of research in the present scenario. In the past, many studies were conducted on exploring the different applications of Stenotrophomonas in various fields, however, further researches are required to explore the various functions of Stenotrophomonas in plant growth promotion and management of pests and diseases under diverse growth conditions and to demonstrate its interaction with plant and soil systems. The present review discusses various plant growth and biocontrol attributes of the genus Stenotrophomonas in various food crops along with knowledge gaps. Additionally, the potential risks and challenges associated with the use of Stenotrophomonas in agriculture systems have also been discussed along with a call for further research in this area.

SELECTION OF CITATIONS
SEARCH DETAIL
...