Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 7(9): 857-61, 2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27660691

ABSTRACT

In an effort to develop a novel therapeutic agent aimed at addressing the unmet need of patients with osteoarthritis pain, we set out to develop an inhibitor for autotaxin with excellent potency and physical properties to allow for the clinical investigation of autotaxin-induced nociceptive and neuropathic pain. An initial hit identification campaign led to an aminopyrimidine series with an autotaxin IC50 of 500 nM. X-ray crystallography enabled the optimization to a lead compound that demonstrated favorable potency (IC50 = 2 nM), PK properties, and a robust PK/PD relationship.

2.
J Med Chem ; 57(24): 10476-85, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25415648

ABSTRACT

A disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) and ADAMTS-5 are zinc metalloproteases commonly referred to as aggrecanase-1 and aggrecanase-2, respectively. These enzymes are involved in the degradation of aggrecan, a key component of cartilage. Inhibitors of these enzymes could be potential osteoarthritis (OA) therapies. A series of hydantoin inhibitors of ADAMTS-4 and ADAMTS-5 were identified from a screening campaign and optimized through structure-based drug design to give hydantoin 13. Hydantoin 13 had excellent selectivity over other zinc metalloproteases such as TACE, MMP2, MMP3, MMP13, and MMP14. The compound also produced efficacy in both a chemically induced and surgical model of OA in rats.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Benzofurans/pharmacology , Hydantoins/pharmacology , Osteoarthritis/drug therapy , Procollagen N-Endopeptidase/antagonists & inhibitors , Protease Inhibitors/pharmacology , ADAMTS4 Protein , ADAMTS5 Protein , Animals , Benzofurans/chemistry , Cells, Cultured , Crystallography, X-Ray , Hydantoins/chemistry , Male , Menisci, Tibial/drug effects , Menisci, Tibial/pathology , Microsomes/drug effects , Microsomes/metabolism , Models, Anatomic , Models, Molecular , Molecular Structure , Osteoarthritis/pathology , Protease Inhibitors/chemistry , Rats , Rats, Inbred Lew , Structure-Activity Relationship , Tibial Meniscus Injuries
3.
ACS Med Chem Lett ; 2(8): 583-6, 2011 Aug 11.
Article in English | MEDLINE | ID: mdl-24900353

ABSTRACT

We report the novel combination of a selective beta adrenoceptor modulator and a norepinephrine-serotonin uptake inhibitor (sibutramine) with potential for the treatment of obesity. The synthesis and characterization of 6-[4-[2-[[(2S)-3-(9H-carbazol-4-yloxy)-2-hydroxypropyl]amino]-2-methylpropyl]phenoxy]pyridine-3-carboxamide (LY377604), a human ß3-adrenergic receptor agonist and ß1- and ß2-adrenergic receptor antagonist with no sympathomimetic activity at the ß1- and ß2-adrenergic receptors, is reported. Some in vivo data in both rats and humans is presented.

4.
Bioorg Med Chem Lett ; 16(21): 5691-4, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16931005

ABSTRACT

The synthesis and biological evaluation of a series of benzimidazolone beta(3) adrenergic receptor agonists are described. A trend toward the reduction of rat atrial tachycardia upon increasing steric bulk at the 3-position of the benzimidazolone moiety was observed.


Subject(s)
Adrenergic beta-3 Receptor Antagonists , Adrenergic beta-Agonists/pharmacology , Benzimidazoles/pharmacology , Adrenergic beta-Agonists/chemistry , Benzimidazoles/chemistry , Humans
5.
Bioorg Med Chem Lett ; 14(24): 6113-6, 2004 Dec 20.
Article in English | MEDLINE | ID: mdl-15546740

ABSTRACT

To understand the species selectivity in a series of alpha-methyl-alpha-phenoxy carboxylic acid PPARalpha/gamma dual agonists (1-11), structure-based molecular modeling was carried out in the ligand binding pockets of both human and mouse PPARalpha. This study suggested that interaction of both 4-phenoxy and phenyloxazole substituents of these ligands with F272 and M279 in mouse PPARalpha leads to the species-specific divergence in ligand binding. Insights obtained in the molecular modeling studies of these key interactions resulted in the ability to convert a human-selective PPARalpha agonist to a human and mouse dual agonist within the same platform.


Subject(s)
Cinnamates/chemical synthesis , Models, Molecular , PPAR alpha/agonists , Animals , Cinnamates/chemistry , Cinnamates/pharmacology , Drug Design , Humans , Ligands , Mice , Molecular Structure , Species Specificity , Structure-Activity Relationship
6.
J Med Chem ; 47(10): 2422-5, 2004 May 06.
Article in English | MEDLINE | ID: mdl-15115385

ABSTRACT

The design and synthesis of the dual peroxisome proliferator activated receptor (PPAR) alpha/gamma agonist (S)-2-methyl-3-[4-[2-(5-methyl-2-thiophen-2-yl-oxazol-4-yl)ethoxy]phenyl]-2-phenoxypropionic acid (2) for the treatment of type 2 diabetes and associated dyslipidemia are described. 2 possesses a potent dual hPPAR alpha/gamma agonist profile (IC(50) = 28 and 10 nM; EC(50) = 9 and 4 nM, respectively, for hPPARalpha and hPPARgamma). In preclinical models, 2 substantially improves insulin sensitivity and potently reverses diabetic hyperglycemia while significantly improving overall lipid homeostasis.


Subject(s)
Hypoglycemic Agents/chemical synthesis , Hypolipidemic Agents/chemical synthesis , Phenylpropionates/chemical synthesis , Receptors, Cytoplasmic and Nuclear/agonists , Thiophenes/chemical synthesis , Transcription Factors/agonists , Animals , Binding, Competitive , Cell Line , Diabetes Mellitus, Type 2/drug therapy , Female , Humans , Hyperlipidemias/drug therapy , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/pharmacology , Phenylpropionates/chemistry , Phenylpropionates/pharmacology , Radioligand Assay , Rats , Rats, Zucker , Stereoisomerism , Structure-Activity Relationship , Thiophenes/chemistry , Thiophenes/pharmacology
7.
Diabetes ; 51(4): 1083-7, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11916929

ABSTRACT

A novel nonthiazolidinedione dual peroxisome proliferator- activated receptor (PPAR)-alpha/gamma agonist, LY465608, was designed to address the major metabolic disturbances of type 2 diabetes. LY465608 altered PPAR-responsive genes in liver and fat of db/db mice and dose-dependently lowered plasma glucose in hyperglycemic male Zucker diabetic fatty (ZDF) rats, with an ED(50) for glucose normalization of 3.8 mg small middle dot kg(-1) small middle dot day(-1). Metabolic improvements were associated with enhanced insulin sensitivity, as demonstrated in female obese Zucker (fa/fa) rats using both oral glucose tolerance tests and hyperinsulinemic-euglycemic clamps. Further characterization of LY465608 revealed metabolic changes distinct from a selective PPAR-gamma agonist, which were presumably due to the concomitant PPAR-alpha agonism, lower respiratory quotient, and less fat accumulation, despite a similar impact on glycemia in male ZDF rats. In addition to these alterations in diabetic and insulin-resistant animals, LY465608 dose-dependently elevated HDL cholesterol and lowered plasma triglycerides in human apolipoprotein A-I transgenic mice, demonstrating that this compound significantly improves primary cardiovascular risk factors. Overall, these studies demonstrate that LY465608 beneficially impacts multiple facets of type 2 diabetes and associated cardiovascular risk, including those facets involved in the development of micro- and macrovascular complications, which are the major sources for morbidity and mortality in these patients.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Hyperglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin Resistance , Metabolic Syndrome/physiology , Organic Chemicals , Receptors, Cytoplasmic and Nuclear/agonists , Thiazolidinediones , Transcription Factors/agonists , Animals , Blood Glucose/drug effects , DNA-Binding Proteins/agonists , Diabetes Mellitus, Type 2/blood , Dose-Response Relationship, Drug , Energy Intake/drug effects , Energy Metabolism/drug effects , Glucose Tolerance Test , Male , Mice , Mice, Mutant Strains , Rats , Rats, Zucker , Rosiglitazone , Thiazoles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...