Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Biotechnol Adv ; 74: 108391, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848795

ABSTRACT

Viral vectors are an emerging, exciting class of biologics whose application in vaccines, oncology, and gene therapy has grown exponentially in recent years. Following first regulatory approval, this class of therapeutics has been vigorously pursued to treat monogenic disorders including orphan diseases, entering hundreds of new products into pipelines. Viral vector manufacturing supporting clinical efforts has spurred the introduction of a broad swath of analytical techniques dedicated to assessing the diverse and evolving panel of Critical Quality Attributes (CQAs) of these products. Herein, we provide an overview of the current state of analytics enabling measurement of CQAs such as capsid and vector identities, product titer, transduction efficiency, impurity clearance etc. We highlight orthogonal methods and discuss the advantages and limitations of these techniques while evaluating their adaptation as process analytical technologies. Finally, we identify gaps and propose opportunities in enabling existing technologies for real-time monitoring from hardware, software, and data analysis viewpoints for technology development within viral vector biomanufacturing.

2.
Biotechnol J ; 19(1): e2300230, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37728197

ABSTRACT

Adeno-associated viruses (AAVs) have acquired a central role in modern medicine as delivery agents for gene therapies targeting rare diseases. While new AAVs with improved tissue targeting, potency, and safety are being introduced, their biomanufacturing technology is lagging. In particular, the AAV purification pipeline hinges on protein ligands for the affinity-based capture step. While featuring excellent AAV binding capacity and selectivity, these ligands require strong acid (pH <3) elution conditions, which can compromise the product's activity and stability. Additionally, their high cost and limited lifetime has a significant impact on the price tag of AAV-based therapies. Seeking to introduce a more robust and affordable affinity technology, this study introduces a cohort of peptide ligands that (i) mimic the biorecognition activity of the AAV receptor (AAVR) and anti-AAV antibody A20, (ii) enable product elution under near-physiological conditions (pH 6.0), and (iii) grant extended reusability by withstanding multiple regenerations. A20-mimetic CYIHFSGYTNYNPSLKSC and AAVR-mimetic CVIDGSQSTDDDKIC demonstrated excellent capture of serotypes belonging to distinct clones/clades - namely, AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. This corroborates the in silico models documenting their ability to target regions of the viral capsid that are conserved across all serotypes. CVIDGSQSTDDDKIC-Toyopearl resin features binding capacity (≈1014 vp mL-1 ) and product yields (≈60%-80%) on par with commercial adsorbents, and purifies AAV2 from HEK293 and Sf9 cell lysates with high recovery (up to 78%), reduction of host cell proteins (up to 700-fold), and high transduction activity (up to 65%).


Subject(s)
Capsid , Dependovirus , Humans , Dependovirus/genetics , Capsid/chemistry , HEK293 Cells , Transduction, Genetic , Peptides/metabolism , Ligands , Chromatography, Affinity , Genetic Vectors/genetics
3.
Elife ; 112022 05 10.
Article in English | MEDLINE | ID: mdl-35535852

ABSTRACT

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by monoallelic mutation or deletion in the transcription factor 4 (TCF4) gene. Individuals with PTHS typically present in the first year of life with developmental delay and exhibit intellectual disability, lack of speech, and motor incoordination. There are no effective treatments available for PTHS, but the root cause of the disorder, TCF4 haploinsufficiency, suggests that it could be treated by normalizing TCF4 gene expression. Here, we performed proof-of-concept viral gene therapy experiments using a conditional Tcf4 mouse model of PTHS and found that postnatally reinstating Tcf4 expression in neurons improved anxiety-like behavior, activity levels, innate behaviors, and memory. Postnatal reinstatement also partially corrected EEG abnormalities, which we characterized here for the first time, and the expression of key TCF4-regulated genes. Our results support a genetic normalization approach as a treatment strategy for PTHS, and possibly other TCF4-linked disorders.


Subject(s)
Intellectual Disability , Transcription Factor 4/metabolism , Animals , Disease Models, Animal , Facies , Hyperventilation , Intellectual Disability/genetics , Intellectual Disability/metabolism , Mice , Phenotype , Transcription Factor 4/genetics
4.
Cell ; 184(26): 6344-6360.e18, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34890577

ABSTRACT

The anterior insular cortex (aIC) plays a critical role in cognitive and motivational control of behavior, but the underlying neural mechanism remains elusive. Here, we show that aIC neurons expressing Fezf2 (aICFezf2), which are the pyramidal tract neurons, signal motivational vigor and invigorate need-seeking behavior through projections to the brainstem nucleus tractus solitarii (NTS). aICFezf2 neurons and their postsynaptic NTS neurons acquire anticipatory activity through learning, which encodes the perceived value and the vigor of actions to pursue homeostatic needs. Correspondingly, aIC → NTS circuit activity controls vigor, effort, and striatal dopamine release but only if the action is learned and the outcome is needed. Notably, aICFezf2 neurons do not represent taste or valence. Moreover, aIC → NTS activity neither drives reinforcement nor influences total consumption. These results pinpoint specific functions of aIC → NTS circuit for selectively controlling motivational vigor and suggest that motivation is subserved, in part, by aIC's top-down regulation of dopamine signaling.


Subject(s)
Brain Stem/physiology , Insular Cortex/physiology , Motivation , Neural Pathways/physiology , Animals , Behavior, Animal , Dopamine/metabolism , Female , Learning , Male , Mice, Inbred C57BL , Neurons/physiology , Nucleus Accumbens/metabolism , Time Factors
5.
Cell Rep ; 37(6): 109993, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34758329

ABSTRACT

Parvalbumin and somatostatin inhibitory interneurons gate information flow in discrete cortical areas that compute sensory and cognitive functions. Despite the considerable differences between areas, individual interneuron subtypes are genetically invariant and are thought to form canonical circuits regardless of which area they are embedded in. Here, we investigate whether this is achieved through selective and systematic variations in their afferent connectivity during development. To this end, we examined the development of their inputs within distinct cortical areas. We find that interneuron afferents show little evidence of being globally stereotyped. Rather, each subtype displays characteristic regional connectivity and distinct developmental dynamics by which this connectivity is achieved. Moreover, afferents dynamically regulated during development are disrupted by early sensory deprivation and in a model of fragile X syndrome. These data provide a comprehensive map of interneuron afferents across cortical areas and reveal the logic by which these circuits are established during development.


Subject(s)
Cerebral Cortex/pathology , Fragile X Mental Retardation Protein/physiology , Fragile X Syndrome/pathology , Interneurons/pathology , Presynaptic Terminals/pathology , Sense Organs/pathology , Synapses/pathology , Animals , Cerebral Cortex/metabolism , Female , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Interneurons/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Pathways , Presynaptic Terminals/metabolism , Rabies virus/genetics , Sense Organs/metabolism , Synapses/metabolism
6.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: mdl-34676830

ABSTRACT

Loss of the maternal UBE3A allele causes Angelman syndrome (AS), a debilitating neurodevelopmental disorder. Here, we devised an AS treatment strategy based on reinstating dual-isoform expression of human UBE3A (hUBE3A) in the developing brain. Kozak sequence engineering of our codon-optimized vector (hUBE3Aopt) enabled translation of both short and long hUBE3A protein isoforms at a near-endogenous 3:1 (short/long) ratio, a feature that could help to support optimal therapeutic outcomes. To model widespread brain delivery and early postnatal onset of hUBE3A expression, we packaged the hUBE3Aopt vector into PHP.B capsids and performed intracerebroventricular injections in neonates. This treatment significantly improved motor learning and innate behaviors in AS mice, and it rendered them resilient to epileptogenesis and associated hippocampal neuropathologies induced by seizure kindling. hUBE3A overexpression occurred frequently in the hippocampus but was uncommon in the neocortex and other major brain structures; furthermore, it did not correlate with behavioral performance. Our results demonstrate the feasibility, tolerability, and therapeutic potential for dual-isoform hUBE3A gene transfer in the treatment of AS.


Subject(s)
Angelman Syndrome/genetics , Seizures/genetics , Amino Acid Sequence , Animals , Disease Models, Animal , Humans , Mice , Treatment Outcome , Ubiquitin-Protein Ligases
7.
Nat Neurosci ; 24(11): 1586-1600, 2021 11.
Article in English | MEDLINE | ID: mdl-34663958

ABSTRACT

The basolateral amygdala (BLA) plays essential roles in behaviors motivated by stimuli with either positive or negative valence, but how it processes motivationally opposing information and participates in establishing valence-specific behaviors remains unclear. Here, by targeting Fezf2-expressing neurons in the BLA, we identify and characterize two functionally distinct classes in behaving mice, the negative-valence neurons and positive-valence neurons, which innately represent aversive and rewarding stimuli, respectively, and through learning acquire predictive responses that are essential for punishment avoidance or reward seeking. Notably, these two classes of neurons receive inputs from separate sets of sensory and limbic areas, and convey punishment and reward information through projections to the nucleus accumbens and olfactory tubercle, respectively, to drive negative and positive reinforcement. Thus, valence-specific BLA neurons are wired with distinctive input-output structures, forming a circuit framework that supports the roles of the BLA in encoding, learning and executing valence-specific motivated behaviors.


Subject(s)
Amygdala/metabolism , Attention/physiology , Avoidance Learning/physiology , Corpus Striatum/metabolism , DNA-Binding Proteins/genetics , Nerve Net/metabolism , Nerve Tissue Proteins/genetics , Animals , DNA-Binding Proteins/biosynthesis , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motivation/physiology , Nerve Tissue Proteins/biosynthesis
8.
Elife ; 102021 07 22.
Article in English | MEDLINE | ID: mdl-34292150

ABSTRACT

Projection neurons (PNs) in the mammalian olfactory bulb (OB) receive input from the nose and project to diverse cortical and subcortical areas. Morphological and physiological studies have highlighted functional heterogeneity, yet no molecular markers have been described that delineate PN subtypes. Here, we used viral injections into olfactory cortex and fluorescent nucleus sorting to enrich PNs for high-throughput single nucleus and bulk RNA deep sequencing. Transcriptome analysis and RNA in situ hybridization identified distinct mitral and tufted cell populations with characteristic transcription factor network topology, cell adhesion, and excitability-related gene expression. Finally, we describe a new computational approach for integrating bulk and snRNA-seq data and provide evidence that different mitral cell populations preferentially project to different target regions. Together, we have identified potential molecular and gene regulatory mechanisms underlying PN diversity and provide new molecular entry points into studying the diverse functional roles of mitral and tufted cell subtypes.


Subject(s)
Interneurons/physiology , Neurons/physiology , Olfactory Bulb/physiology , Transcription Factors/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA
9.
J Biomol Tech ; 32(3): 121-133, 2021 09.
Article in English | MEDLINE | ID: mdl-35027870

ABSTRACT

The worldwide coronavirus disease 2019 pandemic has had devastating effects on health, healthcare infrastructure, social structure, and economics. One of the limiting factors in containing the spread of this virus has been the lack of widespread availability of fast, inexpensive, and reliable methods for testing of individuals. Frequent screening for infected and often asymptomatic people is a cornerstone of pandemic management plans. Here, we introduce 2 pH-sensitive "LAMPshade" dyes as novel readouts in an isothermal Reverse Transcriptase Loop-mediated isothermal AMPlification amplification assay for severe acute respiratory syndrome coronavirus 2 RNA. The resulting JaneliaLAMP assay is robust, simple, inexpensive, and has low technical requirements, and we describe its use and performance in direct testing of contrived and clinical samples without RNA extraction.


Subject(s)
COVID-19 , RNA, Viral , Coloring Agents , Humans , Hydrogen-Ion Concentration , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity , Social Structure
10.
Cell ; 183(1): 211-227.e20, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32937106

ABSTRACT

The striosome compartment within the dorsal striatum has been implicated in reinforcement learning and regulation of motivation, but how striosomal neurons contribute to these functions remains elusive. Here, we show that a genetically identified striosomal population, which expresses the Teashirt family zinc finger 1 (Tshz1) and belongs to the direct pathway, drives negative reinforcement and is essential for aversive learning in mice. Contrasting a "conventional" striosomal direct pathway, the Tshz1 neurons cause aversion, movement suppression, and negative reinforcement once activated, and they receive a distinct set of synaptic inputs. These neurons are predominantly excited by punishment rather than reward and represent the anticipation of punishment or the motivation for avoidance. Furthermore, inhibiting these neurons impairs punishment-based learning without affecting reward learning or movement. These results establish a major role of striosomal neurons in behaviors reinforced by punishment and moreover uncover functions of the direct pathway unaccounted for in classic models.


Subject(s)
Avoidance Learning/physiology , Corpus Striatum/physiology , Homeodomain Proteins/genetics , Repressor Proteins/genetics , Animals , Basal Ganglia , Female , Homeodomain Proteins/metabolism , Learning/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motivation , Neurons/physiology , Punishment , Reinforcement, Psychology , Repressor Proteins/metabolism
11.
Neuron ; 93(4): 822-839.e6, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28162807

ABSTRACT

Pain thresholds are, in part, set as a function of emotional and internal states by descending modulation of nociceptive transmission in the spinal cord. Neurons of the rostral ventromedial medulla (RVM) are thought to critically contribute to this process; however, the neural circuits and synaptic mechanisms by which distinct populations of RVM neurons facilitate or diminish pain remain elusive. Here we used in vivo opto/chemogenetic manipulations and trans-synaptic tracing of genetically identified dorsal horn and RVM neurons to uncover an RVM-spinal cord-primary afferent circuit controlling pain thresholds. Unexpectedly, we found that RVM GABAergic neurons facilitate mechanical pain by inhibiting dorsal horn enkephalinergic/GABAergic interneurons. We further demonstrate that these interneurons gate sensory inputs and control pain through temporally coordinated enkephalin- and GABA-mediated presynaptic inhibition of somatosensory neurons. Our results uncover a descending disynaptic inhibitory circuit that facilitates mechanical pain, is engaged during stress, and could be targeted to establish higher pain thresholds. VIDEO ABSTRACT.


Subject(s)
Enkephalins/metabolism , GABAergic Neurons/metabolism , Interneurons/metabolism , Neural Pathways/physiology , Pain/physiopathology , Spinal Cord/metabolism , Animals , Brain Stem/metabolism , Brain Stem/physiopathology , Medulla Oblongata/metabolism , Mice, Transgenic , Spinal Cord Dorsal Horn/metabolism , Spinal Cord Dorsal Horn/physiopathology
12.
Neuron ; 92(2): 372-382, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27720486

ABSTRACT

Efficient retrograde access to projection neurons for the delivery of sensors and effectors constitutes an important and enabling capability for neural circuit dissection. Such an approach would also be useful for gene therapy, including the treatment of neurodegenerative disorders characterized by pathological spread through functionally connected and highly distributed networks. Viral vectors, in particular, are powerful gene delivery vehicles for the nervous system, but all available tools suffer from inefficient retrograde transport or limited clinical potential. To address this need, we applied in vivo directed evolution to engineer potent retrograde functionality into the capsid of adeno-associated virus (AAV), a vector that has shown promise in neuroscience research and the clinic. A newly evolved variant, rAAV2-retro, permits robust retrograde access to projection neurons with efficiency comparable to classical synthetic retrograde tracers and enables sufficient sensor/effector expression for functional circuit interrogation and in vivo genome editing in targeted neuronal populations. VIDEO ABSTRACT.


Subject(s)
Dependovirus , Gene Editing/methods , Gene Transfer Techniques , Genetic Vectors , Neurons/metabolism , Animals , Capsid , Cerebellum/cytology , Cerebellum/metabolism , Female , Male , Mice , Rats
13.
Cell ; 155(6): 1337-50, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24315102

ABSTRACT

Neural circuits for essential natural behaviors are shaped by selective pressure to coordinate reliable execution of flexible goal-directed actions. However, the structural and functional organization of survival-oriented circuits is poorly understood due to exceptionally complex neuroanatomy. This is exemplified by AGRP neurons, which are a molecularly defined population that is sufficient to rapidly coordinate voracious food seeking and consumption behaviors. Here, we use cell-type-specific techniques for neural circuit manipulation and projection-specific anatomical analysis to examine the organization of this critical homeostatic circuit that regulates feeding. We show that AGRP neuronal circuits use a segregated, parallel, and redundant output configuration. AGRP neuron axon projections that target different brain regions originate from distinct subpopulations, several of which are sufficient to independently evoke feeding. The concerted anatomical and functional analysis of AGRP neuron projection populations reveals a constellation of core forebrain nodes, which are part of an extended circuit that mediates feeding behavior.


Subject(s)
Brain/physiology , Feeding Behavior , Homeostasis , Neural Pathways , Neurons/metabolism , Agouti-Related Protein/metabolism , Animals , Ghrelin/metabolism , Mice
14.
Blood ; 117(20): 5425-37, 2011 May 19.
Article in English | MEDLINE | ID: mdl-21421840

ABSTRACT

Hepatitis C virus (HCV) is associated with the B-cell lymphoproliferative disorders mixed cryoglobulinemia (MC) and non-Hodgkin lymphoma. We have previously reported that HCV(+)MC(+) patients have clonal expansions of hypermutated, rheumatoid factor-bearing marginal zone-like IgM(+)CD27(+) peripheral B cells using the V(H)1-69 gene. Here we coupled transcriptional profiling with immunophenotypic and functional studies to ascertain these cells' role in MC pathogenesis. Despite their fundamental role in MC disease, these B cells have overall transcriptional features of anergy and apoptosis instead of neoplastic transformation. Highly up-regulated genes include SOX5, CD11C, galectin-1, and FGR, similar to a previously described FCRL4(+) memory B-cell subset and to an "exhausted," anergic CD21(low) memory B-cell subset in HIV(+) patients. Moreover, HCV(+)MC(+) patients' clonal peripheral B cells are enriched with CD21(low), CD11c(+), FCRL4(high), IL-4R(low) memory B cells. In contrast to the functional, rheumatoid factor-secreting CD27(+)CD21(high) subset, the CD27(+)CD21(low) subpopulation exhibits decreased calcium mobilization and does not efficiently differentiate into rheumatoid factor-secreting plasmablasts, suggesting that a large proportion of HCV(+)MC(+) patients' clonally expanded peripheral B cells is prone to anergy and/or apoptosis. Down-regulation of multiple activation pathways may represent a homeostatic mechanism attenuating otherwise uncontrolled stimulation of circulating HCV-containing immune complexes.


Subject(s)
B-Lymphocyte Subsets/immunology , Cryoglobulinemia/etiology , Cryoglobulinemia/immunology , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/immunology , Adult , Apoptosis , B-Lymphocyte Subsets/pathology , CD11c Antigen/metabolism , Clonal Anergy , Cryoglobulinemia/genetics , Cryoglobulinemia/pathology , Female , Gene Expression Profiling , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/pathology , Humans , Immunoglobulin M/metabolism , Immunologic Memory , Interleukin-4 Receptor alpha Subunit/metabolism , Lymphocyte Activation , Male , Middle Aged , Receptors, Complement 3d/metabolism , Receptors, Fc/metabolism , Rheumatoid Factor/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
15.
Proc Natl Acad Sci U S A ; 107(7): 3141-5, 2010 Feb 16.
Article in English | MEDLINE | ID: mdl-20133632

ABSTRACT

Hepatitis C virus (HCV) remains a major public health problem, affecting approximately 130 million people worldwide. HCV infection can lead to cirrhosis, hepatocellular carcinoma, and end-stage liver disease, as well as extrahepatic complications such as cryoglobulinemia and lymphoma. Preventative and therapeutic options are severely limited; there is no HCV vaccine available, and nonspecific, IFN-based treatments are frequently ineffective. Development of targeted antivirals has been hampered by the lack of robust HCV cell culture systems that reliably predict human responses. Here, we show the entire HCV life cycle recapitulated in micropatterned cocultures (MPCCs) of primary human hepatocytes and supportive stroma in a multiwell format. MPCCs form polarized cell layers expressing all known HCV entry factors and sustain viral replication for several weeks. When coupled with highly sensitive fluorescence- and luminescence-based reporter systems, MPCCs have potential as a high-throughput platform for simultaneous assessment of in vitro efficacy and toxicity profiles of anti-HCV therapeutics.


Subject(s)
Cell Culture Techniques/methods , Hepacivirus/physiology , Hepatitis C/physiopathology , Hepatocytes/virology , Tissue Engineering/methods , Antibodies, Monoclonal/pharmacology , Cells, Cultured , Humans , Virus Internalization/drug effects , Virus Replication/physiology
16.
AIDS ; 23(8): 907-15, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19414991

ABSTRACT

OBJECTIVES: To characterize HIV-1 env compartmentalization between cerebrospinal fluid (CSF) and peripheral blood plasma over all stages of the HIV-1 disease course, and to determine the relationship between the extent of CSF HIV-1 env compartmentalization and clinical neurologic disease status. DESIGN: Paired blood plasma and CSF specimens were collected from 66 HIV-infected patients cross-sectionally representing all major clinical stages relating to HIV-associated neurologic disease, including primary infection, asymptomatic chronic infection, chronic infection with minor global impairment, and immune deficiency with HIV-associated dementia. METHODS: Heteroduplex tracking assays and bulk sequence analysis targeting the V1/V2, C2-V3, and V4/V5 regions of env were performed to characterize the genetic makeup of complex HIV-1 populations in the cross-sectional blood plasma and CSF specimens. The levels of blood plasma/CSF env compartmentalization were quantified and compared across the different clinical stages of HIV-1 neurologic disease. RESULTS: Blood plasma/CSF env compartmentalization levels varied considerably by disease stage and were generally consistent across all three regions of env characterized. Little or no compartmentalization was observed in non-impaired individuals with primary HIV-1 infection. Compartmentalization levels were elevated in chronically infected patients, but were not significantly different between mildly impaired and non-impaired patients. Patients with HIV-associated dementia showed significantly greater blood plasma/CSF env compartmentalization relative to other groups. CONCLUSION: : Increased CSF compartmentalization of the HIV-1 env gene, which may reflect independent HIV-1 replication and evolution within the central nervous system, is specifically associated with HIV-associated dementia and not the less severe forms of HIV-1 neurologic disease.


Subject(s)
Genes, env , HIV Infections/cerebrospinal fluid , HIV-1/genetics , Nervous System Diseases/cerebrospinal fluid , AIDS Dementia Complex/complications , AIDS Dementia Complex/metabolism , California , Chronic Disease , Cross-Sectional Studies , Disease Progression , HIV Infections/blood , HIV Infections/complications , Humans , Nervous System Diseases/blood , Nervous System Diseases/complications , North Carolina , San Francisco
17.
Hepatology ; 48(6): 1843-50, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19003912

ABSTRACT

UNLABELLED: Hepatitis C virus (HCV) replicates primarily in the liver, but HCV RNA has been observed in association with other tissues and cells including B and T lymphocytes, monocytes, and dendritic cells. We have taken advantage of a recently described, robust system that fully recapitulates HCV entry, replication and virus production in vitro to re-examine the issue of HCV infection of blood cell subsets. The HCV replicase inhibitor 2'C-methyl adenosine was used to distinguish HCV RNA replication from RNA persistence. Whereas cell culture-grown HCV replicated in Huh-7.5 hepatoma cells, no HCV replication was detected in B or T lymphocytes, monocytes, macrophages, or dendritic cells from healthy donors. No blood cell subset tested expressed significant levels of Claudin-1, a tight junction protein needed for HCV infection of Huh-7.5 cells. A B cell line expressing high levels of Claudin-1, CD81, and scavenger receptor BI remained resistant to HCV pseudoparticle infection. We bypassed the block in HCV entry by transfecting HCV RNA into blood cell subsets. Transfected RNA was not detectably translated and induced high levels of interferon-alpha. Supernatants from HCV RNA-transfected macrophages inhibited HCV replication in Huh-7.5 cells. CONCLUSION: We conclude that multiple blocks prevent blood cells from supporting HCV infection.


Subject(s)
Hepacivirus/physiology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/virology , Virus Replication/physiology , Antigens, CD/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Cell Line , Cell Line, Tumor , Cells, Cultured , Claudin-1 , Dendritic Cells/cytology , Dendritic Cells/metabolism , Dendritic Cells/virology , Hepacivirus/genetics , Hepacivirus/pathogenicity , Humans , Leukocytes, Mononuclear/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/virology , Membrane Proteins/metabolism , RNA, Viral/genetics , Scavenger Receptors, Class B/metabolism , Tetraspanin 28 , Transfection
18.
J Virol ; 79(16): 10830-4, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16051875

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) surface Env protein has been implicated in the development of HIV-1-associated dementia (HAD). HIV-1 env diversity was analyzed by heteroduplex tracking assay in 27 infected subjects with various neurological statuses. env compartmentalization between the blood and cerebral spinal fluid (CSF) was apparent with all neurological categories. However, in subjects with HAD, significantly more CSF virus was represented by CNS-unique env variants. Variants specialized for replication in the CNS may play a larger role in the development of HAD. Alternatively, HAD may be associated with a more pronounced state of immunosuppression that permits more extensive replication and independent evolution within the CNS compartment.


Subject(s)
AIDS Dementia Complex/virology , Gene Products, env/physiology , HIV-1/physiology , AIDS Dementia Complex/etiology , Adult , Amino Acid Sequence , Brain/virology , Cerebrospinal Fluid/virology , Female , Humans , Male , Middle Aged , Molecular Sequence Data , Virus Replication
19.
J Virol ; 79(13): 7959-66, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15956542

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) during primary infection and persists in this compartment by unknown mechanisms over the course of infection. In this study, we examined viral population dynamics in four asymptomatic subjects commencing antiretroviral therapy to characterize cellular sources of HIV-1 in the CNS. The inability to monitor viruses directly in the brain poses a major challenge in studying HIV-1 dynamics in the CNS. Studies of HIV-1 in cerebrospinal fluid (CSF) provide a useful surrogate for the sampling of virus in the CNS, but they are complicated by the fact that infected cells in local CNS tissues and in the periphery contribute to the population pool of HIV-1 in CSF. We utilized heteroduplex tracking assays to differentiate CSF HIV-1 variants that were shared with peripheral blood plasma from those that were compartmentalized in CSF and therefore presumably derived from local CNS tissues. We then tracked the relative decline of individual viral variants during the initial days of antiretroviral therapy. We found that HIV-1 variants compartmentalized in CSF declined rapidly during therapy, with maximum half-lives of approximately 1 to 3 days. These kinetics emulate the decline in HIV-1 produced from short-lived CD4+ T cells in the periphery, suggesting that a similarly short-lived, HIV-infected cell population exists within the CNS. We propose that short-lived CD4+ T cells trafficking between the CNS and the periphery play an important role in amplifying and maintaining HIV-1 populations in the CNS during the asymptomatic phase of infection.


Subject(s)
AIDS Dementia Complex/cerebrospinal fluid , Central Nervous System/virology , Cerebrospinal Fluid/virology , HIV-1/physiology , Virus Replication/physiology , AIDS Dementia Complex/blood , AIDS Dementia Complex/virology , Base Sequence , DNA Primers , Genetic Variation , HIV-1/genetics , HIV-1/isolation & purification , Humans , Leukocytes/virology , Reverse Transcriptase Polymerase Chain Reaction
20.
Am J Trop Med Hyg ; 72(6): 694-701, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15964952

ABSTRACT

We developed a novel Plasmodium falciparum genotyping strategy based on the heteroduplex tracking assay (HTA) method commonly used to genotype viruses. Because it can detect both sequence and size polymorphisms, we hypothesized that HTA is more sensitive than current methods. To test this hypothesis, we compared the ability of HTA and a nested polymerase chain reaction (PCR) to detect genetic diversity in 17 Thai samples. The HTA detected more MSP1 sequence variants in eight isolates (47%), less sequence variants in three isolates (18%), and an equal number of sequence variants in six isolates (35%), suggesting that HTA is equal to or more sensitive than the nested PCR. This study is a proof of concept that HTA is a sensitive allelic discrimination method able to determine genetic diversity in P. falciparum and warrants its use in studies of antimalarial drug efficacy.


Subject(s)
Alleles , Genetic Heterogeneity , Nucleic Acid Heteroduplexes , Plasmodium falciparum/genetics , Animals , Base Sequence , DNA, Protozoan , Molecular Sequence Data , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...