Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 14: 1085-1092, 2023.
Article in English | MEDLINE | ID: mdl-38025197

ABSTRACT

Polycrystalline SnO2 thin films were grown by atomic layer deposition (ALD) on SiO2/Si(100) substrates from SnI4 and O3. Suitable evaporation temperatures for the SnI4 precursor as well as the relationship between growth per cycle and substrate temperature were determined. Crystal growth in the films in the temperature range of 225-600 °C was identified. Spectroscopic analyses revealed low amounts of residual iodine and implied the formation of single-phase oxide in the films grown at temperatures above 300 °C. Appropriateness of the mentioned precursor system to the preparation of SnO2 films was established.

2.
ACS Appl Mater Interfaces ; 15(36): 42622-42636, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37640298

ABSTRACT

The rapidly expanding demand for photovoltaics (PVs) requires stable, quick, and easy to manufacture solar cells based on socioeconomically and ecologically viable earth-abundant resources. Sb2S3 has been a potential candidate for solar PVs and the efficiency of planar Sb2S3 thin-film solar cells has witnessed a reasonable rise from 5.77% in 2014 to 8% in 2022. Herein, the aim is to bring new insight into Sb2S3 solar cell research by investigating how the bulk and surface properties of the Sb2S3 absorber and the current-voltage and deep-level defect characteristics of solar cells based on these films are affected by the ultrasonic spray pyrolysis deposition temperature and the molar ratio of thiourea to SbEX in solution. The properties of the Sb2S3 absorber are characterized by bulk- and surface-sensitive methods. Solar cells are characterized by temperature-dependent current-voltage, external quantum efficiency, and deep-level transient spectroscopy measurements. In this paper, the first thin-film solar cells based on a planar Sb2S3 absorber grown from antimony ethyl xanthate (SbEX) by ultrasonic spray pyrolysis in air are demonstrated. Devices based on the Sb2S3 absorber grown at 200 °C, especially from a solution of thiourea and SbEX in a molar ratio of 4.5, perform the best by virtue of suppressed surface oxidation of Sb2S3, favorable band alignment, Sb-vacancy concentration, a continuous film morphology, and a suitable film thickness of 75 nm, achieving up to 4.1% power conversion efficiency, which is the best efficiency to date for planar Sb2S3 solar cells grown from xanthate-based precursors. Our findings highlight the importance of developing synthesis conditions to achieve the best solar cell device performance for an Sb2S3 absorber layer pertaining to the chosen deposition method, experimental setup, and precursors.

3.
Nanomaterials (Basel) ; 13(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37110908

ABSTRACT

SiO2 films were grown to thicknesses below 15 nm by ozone-assisted atomic layer deposition. The graphene was a chemical vapor deposited on copper foil and transferred wet-chemically to the SiO2 films. On the top of the graphene layer, either continuous HfO2 or SiO2 films were grown by plasma-assisted atomic layer deposition or by electron beam evaporation, respectively. Micro-Raman spectroscopy confirmed the integrity of the graphene after the deposition processes of both the HfO2 and SiO2. Stacked nanostructures with graphene layers intermediating the SiO2 and either the SiO2 or HfO2 insulator layers were devised as the resistive switching media between the top Ti and bottom TiN electrodes. The behavior of the devices was studied comparatively with and without graphene interlayers. The switching processes were attained in the devices supplied with graphene interlayers, whereas in the media consisting of the SiO2-HfO2 double layers only, the switching effect was not observed. In addition, the endurance characteristics were improved after the insertion of graphene between the wide band gap dielectric layers. Pre-annealing the Si/TiN/SiO2 substrates before transferring the graphene further improved the performance.

4.
Materials (Basel) ; 15(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35160824

ABSTRACT

Crystal structure and electrical properties of hafnium-praseodymium oxide thin films grown by atomic layer deposition on ruthenium substrate electrodes were characterized and compared with those of undoped HfO2 films. The HfO2 reference films crystallized in the stable monoclinic phase of HfO2. Mixing HfO2 and PrOx resulted in the growth of nanocrystalline metastable tetragonal HfO2. The highest relative permittivities reaching 37-40 were measured for the films with tetragonal structures that were grown using HfO2:PrOx cycle ratio of 5:1 and possessed Pr/(Pr + Hf) atomic ratios of 0.09-0.10. All the HfO2:PrOx films exhibited resistive switching behavior. Lower commutation voltages and current values, promising in terms of reduced power consumption, were achieved for the films grown with HfO2:PrOx cycle ratios of 3:1 and 2:1 and showing Pr/(Pr + Hf) atomic ratios of 0.16-0.23. Differently from the undoped HfO2 films, the Pr-doped films showed low variability of resistance state currents and stable endurance behavior, extending over 104 switching cycles.

5.
Nanotechnology ; 32(33)2021 May 26.
Article in English | MEDLINE | ID: mdl-33962408

ABSTRACT

Atomic layer deposition method was used to grow thin films consisting of ZrO2and MnOxlayers. Magnetic and electric properties were studied of films deposited at 300 °C. Some deposition characteristics of the manganese(III)acetylacetonate and ozone process were investigated, such as the dependence of growth rate on the deposition temperature and film crystallinity. All films were partly crystalline in their as-deposited state. Zirconium oxide contained cubic and tetragonal phases of ZrO2, while the manganese oxide was shown to consist of cubic Mn2O3and tetragonal Mn3O4phases. All the films exhibited nonlinear saturative magnetization with hysteresis, as well as resistive switching characteristics.

6.
Beilstein J Nanotechnol ; 9: 119-128, 2018.
Article in English | MEDLINE | ID: mdl-29441257

ABSTRACT

Thin solid films consisting of ZrO2 and Fe2O3 were grown by atomic layer deposition (ALD) at 400 °C. Metastable phases of ZrO2 were stabilized by Fe2O3 doping. The number of alternating ZrO2 and Fe2O3 deposition cycles were varied in order to achieve films with different cation ratios. The influence of annealing on the composition and structure of the thin films was investigated. Additionally, the influence of composition and structure on electrical and magnetic properties was studied. Several samples exhibited a measurable saturation magnetization and most of the samples exhibited a charge polarization. Both phenomena were observed in the sample with a Zr/Fe atomic ratio of 2.0.

7.
Beilstein J Nanotechnol ; 8: 571-578, 2017.
Article in English | MEDLINE | ID: mdl-28382246

ABSTRACT

Graphene has been recognized as a promising gas sensing material. The response of graphene-based sensors can be radically improved by introducing defects in graphene using, for example, metal or metal oxide nanoparticles. We have functionalised CVD grown, single-layer graphene by applying pulsed laser deposition (PLD) of V2O5 which resulted in a thin V2O5 layer on graphene with average thickness of ≈0.6 nm. From Raman spectroscopy, it was concluded that the PLD process also induced defects in graphene. Compared to unmodified graphene, the obtained chemiresistive sensor showed considerable improvement of sensing ammonia at room temperature. In addition, the response time, sensitivity and reversibility were essentially enhanced due to graphene functionalisation by laser deposited V2O5. This can be explained by an increased surface density of gas adsorption sites introduced by high energy atoms in laser ablation plasma and formation of nanophase boundaries between deposited V2O5 and graphene.

SELECTION OF CITATIONS
SEARCH DETAIL
...