Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 352: 199-210, 2022 12.
Article in English | MEDLINE | ID: mdl-36084816

ABSTRACT

Liposomes are promising targeted drug delivery systems with the potential to improve the efficacy and safety profile of certain classes of drugs. Though attractive, there are unique analytical challenges associated with the development of liposomal drugs including human dose prediction given these are multi-component drug delivery systems. In this study, we developed a multimodal imaging approach to provide a comprehensive distribution assessment for an antibacterial drug, GSK2485680, delivered as a liposomal formulation (Lipo680) in a mouse thigh model of bacterial infection to support human dose prediction. Positron emission tomography (PET) imaging was used to track the in vivo biodistribution of Lipo680 over 48 h post-injection providing a clear assessment of the uptake in various tissues and, importantly, the selective accumulation at the site of infection. In addition, a pharmacokinetic model was created to evaluate the kinetics of Lipo680 in different tissues. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was then used to quantify the distribution of GSK2485680 and to qualitatively assess the distribution of a liposomal lipid throughout sections of infected and non-infected hindlimb tissues at high spatial resolution. Through the combination of both PET and MALDI IMS, we observed excellent correlation between the Lipo680-radionuclide signal detected by PET with the GSK2485680 and lipid component signals detected by MALDI IMS. This multimodal translational method can reduce drug attrition by generating comprehensive biodistribution profiles of drug delivery systems to provide mechanistic insight and elucidate safety concerns. Liposomal formulations have potential to deliver therapeutics across a broad array of different indications, and this work serves as a template to aid in delivering future liposomal drugs to the clinic.


Subject(s)
Communicable Diseases , Liposomes , Animals , Mice , Humans , Liposomes/chemistry , Tissue Distribution , Anti-Bacterial Agents , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Positron-Emission Tomography , Multimodal Imaging , Lipids
2.
Bioorg Med Chem Lett ; 26(10): 2464-2469, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27055939
3.
Bioorg Med Chem Lett ; 23(19): 5437-41, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23968823

ABSTRACT

During the course of our research to find novel mode of action antibacterials, we discovered a series of hydroxyl tricyclic compounds that showed good potency against Gram-positive and Gram-negative pathogens. These compounds inhibit bacterial type IIA topoisomerases. Herein we will discuss structure-activity relationships in this series and report advanced studies on compound 1 (GSK966587) which demonstrates good PK and in vivo efficacy properties. X-ray crystallographic studies were used to provide insight into the structural basis for the difference in antibacterial potency between enantiomers.


Subject(s)
Bacteria/enzymology , Naphthyridines/chemistry , Naphthyridines/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Animals , Crystallography, X-Ray , Dogs , Enzyme Activation/drug effects , Haplorhini , Humans , Microbial Sensitivity Tests , Molecular Structure , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...