Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 113(11): 4189-97, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25193048

ABSTRACT

Extracellular trap (ET) formation has been demonstrated as an important novel effector mechanism of polymorphonuclear neutrophils (PMN), eosinophils, mast cells and macrophages acting extracellularly against pathogens. In the present study, we show that tachyzoites of the emerging apicomplexan parasite Besnoitia besnoiti, that have recently been reported as potent inducers of PMN-derived ETosis, also trigger the release of ETs in an additional cell type, namely in monocytes. Fluorescence illustrations as well as scanning electron microscopy analyses (SEM) showed monocyte-promoted ET formation to be rapidly induced upon exposure to viable tachyzoites of B. besnoiti. Classical characteristics of ETs were confirmed by the co-localization of extracellular DNA with histones (H3) or myeloperoxidase (MPO) in parasite-entrapping structures. Monocyte-derived ETs were efficiently abolished by DNase I treatment and significantly reduced by treatments with inhibitors of MPO and NADPH oxidase, thus strengthening the key roles of reactive oxygen species (ROS) and MPO in monocyte ET formation. For comparative reasons, we additionally tested sporozoite stages of the closely related parasite Eimeria bovis for their capacity to induce monocyte-derived ETs and showed that these stages indeed induce ETs. To our best knowledge, we here report for the first time on monocyte ETs against the apicomplexan parasites B. besnoiti and E. bovis. Our results indicate that monocyte-triggered ETs may represent an important effector mechanism of the host early innate immune response against B. besnoiti and add a new cell type to the list of cells capable to release ETs.


Subject(s)
Extracellular Traps/immunology , Immunity, Innate , Monocytes/parasitology , Sarcocystidae/immunology , Animals , Cattle , Eimeria/immunology , Histones/metabolism , Male , Microscopy, Electron, Scanning , Monocytes/immunology , Monocytes/ultrastructure , NADPH Oxidases/metabolism , Peroxidase/metabolism , Phagocytosis
2.
Am J Respir Crit Care Med ; 186(9): 897-908, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22955318

ABSTRACT

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction and vascular remodeling. Recent studies have revealed that immune and inflammatory responses play a crucial role in pathogenesis of idiopathic PAH. OBJECTIVES: To systematically evaluate the number and cross-sectional distribution of inflammatory cells in different sizes of pulmonary arteries from explanted lungs of patients with idiopathic PAH versus healthy donor lungs and to demonstrate functional relevance by blocking stromal-derived factor-1 by the Spiegelmer NOX-A12 in monocrotaline-induced pulmonary hypertension in rats. METHODS: Immunohistochemistry was performed on lung tissue sections from patients with idiopathic PAH and healthy donors. All positively stained cells in whole-lung tissue sections, surrounding the vessels, and in the different compartments of the vessels were counted. To study the effects of blocking SDF-1, rats with monocrotaline-induced pulmonary hypertension were treated with NOX-A12 from Day 21 to Day 35 after monocrotaline administration. MEASUREMENTS AND MAIN RESULTS: We found a significant increase of the perivascular number of macrophages (CD68(+)), macrophages/monocytes (CD14(+)), mast cells (toluidine blue(+)), dendritic cells (CD209(+)), T cells (CD3(+)), cytotoxic T cells (CD8(+)), and helper T cells (CD4(+)) in vessels of idiopathic PAH lungs compared with control subjects. FoxP3(+) mononuclear cells were significantly decreased. In the monocrotaline model, the NOX-A12-induced reduction of mast cells, CD68(+) macrophages, and CD3(+) T cells was associated with improvement of hemodynamics and pulmonary vascular remodeling. CONCLUSIONS: Our findings reveal altered perivascular inflammatory cell infiltration in pulmonary vascular lesions of patients with idiopathic pulmonary arterial hypertension. Targeting attraction of inflammatory cells by blocking stromal-derived factor-1 may be a novel approach for treatment of PAH.


Subject(s)
Hypertension, Pulmonary/immunology , Adult , Airway Remodeling , Animals , Disease Models, Animal , Familial Primary Pulmonary Hypertension , Female , Humans , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology , Immunohistochemistry , Lung Transplantation , Male , Middle Aged , Rats , Tissue Culture Techniques , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...