Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 241: 109743, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37820934

ABSTRACT

Neuropeptide S (NPS) is a neuromodulatory peptide that acts via a G protein-coupled receptor. Centrally administered NPS suppresses anxiety-like behaviors in rodents while producing a paradoxical increase in arousal. In addition, NPS increases drug-seeking behavior when administered during cue-induced reinstatement. Conversely, an NPS receptor (NPSR) antagonist, RTI-118, decreases cocaine-seeking behavior. A biased NPSR ligand, RTI-263, produces anxiolytic-like effects and has memory-enhancing effects similar to those of NPS but without the increase in arousal. In the present study, we show that RTI-263 decreased cocaine seeking by both male and female rats during cue-induced reinstatement. However, RTI-263 did not modulate the animals' behaviors during natural reward paradigms, such as palatable food intake, feeding during a fasting state, and cue-induced reinstatement of sucrose seeking. Therefore, NPSR biased agonists are a potential pharmacotherapy for substance use disorder because of the combined benefits of decreased drug seeking and the suppression of anxiety.


Subject(s)
Anti-Anxiety Agents , Cocaine , Neuropeptides , Female , Rats , Male , Animals , Cocaine/pharmacology , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Receptors, G-Protein-Coupled , Behavior, Animal , Drug-Seeking Behavior , Neuropeptides/pharmacology , Self Administration , Cues , Extinction, Psychological
2.
Anal Bioanal Chem ; 415(26): 6389-6398, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37640826

ABSTRACT

Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging (IR-MALDESI) conventionally utilizes fresh-frozen biological tissues with an ice matrix to improve the detection of analytes. Sucrose-embedding with paraformaldehyde fixation has demonstrated feasibility as an alternative matrix for analysis by IR-MALDESI by preserving tissue features and enhancing ionization of lipids. However, investigating multi-organ systems provides broader context for a biological study and can elucidate more information about a disease state as opposed to a single organ. Danio rerio, or zebrafish, are model organisms for various disease states and can be imaged as a multi-organ sample to analyze morphological and metabolomic preservation as a result of sample preparation. Herein, whole-body zebrafish were imaged to compare sucrose-embedding with paraformaldehyde fixation against conventional fresh-frozen sample preparation. Serial sections were analyzed with and without an ice matrix to evaluate if sucrose functions as an alternative energy-absorbing matrix for IR-MALDESI applications across whole-body tissues. The resulting four conditions were compared in terms of total putative lipid annotations and category diversity, coverage across the entire m/z range, and ion abundance. Ultimately, sucrose-embedded zebrafish had an increase in putative lipid annotations for the combination of putative annotations with and without the application of an ice matrix relative to fresh-frozen tissues which require the application of an ice matrix. Upon the use of an ice matrix, a greater number of high mass putative lipid annotations (e.g., glycerophospholipids, glycerolipids, and sphingolipids) were identified. Conversely, without an ice matrix, sucrose-embedded sections elucidated more putative annotations in lower molecular weight lipids, including fatty acyls and sterol lipids. Similar to the mouse brain model, sucrose-embedding increased putative lipid annotation and abundance for whole-body zebrafish.

3.
J Am Soc Mass Spectrom ; 34(9): 2043-2050, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37526449

ABSTRACT

Increasing the spatial resolution of a mass spectrometry imaging (MSI) method results in a more defined heatmap of the spatial distribution of molecules across a sample, but it is also associated with the disadvantage of increased acquisition time. Decreasing the area of the region of interest to achieve shorter durations results in the loss of potentially valuable information in larger specimens. This work presents a novel MSI method to reduce the time of MSI data acquisition with variable step size imaging: nested regions of interest (nROIs). Using nROIs, a small ROI may be imaged at a higher spatial resolution while nested inside a lower-spatial-resolution peripheral ROI. This conserves the maximal spatial and chemical information generated from target regions while also decreasing the necessary acquisition time. In this work, the nROI method was characterized on mouse liver and applied to top-hat MSI of zebrafish using a novel optical train, which resulted in a significant improvement in both acquisition time and spatial detail of the zebrafish. The nROI method can be employed with any step size pairing and adapted to any method in which the acquisition time of larger high-resolution ROIs poses a practical challenge.


Subject(s)
Zebrafish , Mice , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Time Factors
4.
J Lipid Res ; 62: 100142, 2021.
Article in English | MEDLINE | ID: mdl-34673019

ABSTRACT

Vitamin D is well known for its traditional role in bone mineral homeostasis; however, recent evidence suggests that vitamin D also plays a significant role in metabolic control. This study served to investigate putative linkages between vitamin D deficiency (VDD) and metabolic disruption of bioactive lipids by MS imaging. Our approach employed infrared-matrix-assisted laser desorption electrospray ionization MS imaging for lipid metabolite profiling in 6-month-old zebrafish fed either a VDD or a vitamin D-sufficient (VDS) diet. Using a lipidomics pipeline, we found that VDD zebrafish had a greater abundance of bioactive lipids (N-acyls, endocannabinoids [ECs], diacylglycerols/triacylglycerols, bile acids/bile alcohols, and vitamin D derivatives) suggestive of increased EC tone compared with VDS zebrafish. Tandem MS was performed on several differentially expressed metabolites with sufficient ion abundances to aid in structural elucidation and provide additional support for MS annotations. To confirm activation of the EC pathways, we subsequently examined expression of genes involved in EC biosynthesis, metabolism, and receptor signaling in adipose tissue and liver from VDD and VDS zebrafish. Gene expression changes were congruent with increased EC tone, with VDD zebrafish demonstrating increased synthesis and metabolism of anandamide compared with VDS zebrafish. Taken together, our data suggest that VDD may promote accumulation of bioactive lipids and increased EC tone in zebrafish.


Subject(s)
Endocannabinoids/metabolism , Lipids/chemistry , Vitamin D Deficiency/metabolism , Animals , Lipid Metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...