Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 6(4): 1515-1524, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36933270

ABSTRACT

While polyelemental alloys are shown to be promising for healthcare applications, their effectiveness in promoting bacterial growth remains unexplored. In the present work, we evaluated the interaction of polyelemental glycerolate particles (PGPs) with Escherichia coli (E. coli) bacteria. PGPs were synthesized using the solvothermal route, and nanoscale random distribution of metal cations in the glycerol matrix of PGPs was confirmed. We observed 7-fold growth of E. coli bacteria upon 4 h of interaction with quinary glycerolate (NiZnMnMgSr-Gly) particles in comparison to control E. coli bacteria. Nanoscale microscopic studies on bacteria interactions with PGPs showed the release of metal cations in the bacterium cytoplasm from PGPs. The electron microscopy imaging and chemical mapping indicated bacterial biofilm formation on PGPs without causing significant cell membrane damage. The data showed that the presence of glycerol in PGPs is effective in controlling the release of metal cations, thus preventing bacterial toxicity. The presence of multiple metal cations is expected to provide synergistic effects of nutrients needed for bacterial growth. The present work provides key microscopic insights of mechanisms by which PGPs enhance biofilm growth. This study opens the door for future applications of PGPs in areas where bacterial growth is essential including healthcare, clean energy, and the food industry.


Subject(s)
Escherichia coli , Glycerol , Glycerol/pharmacology , Cell Membrane , Alloys
2.
J Colloid Interface Sci ; 641: 643-652, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36963257

ABSTRACT

High-entropy materials have received notable attention concern on account of their unique structure, tunable properties, and unprecedented potential applications in many fields. In this work, for the first time a NiCoMnZnMg-containing high-entropy glycerolate (HE-Gly) particles has been synthesized using a scalable solvothermal method. The HE-Gly particles were used as a precursor in design of porous high-entropy oxide (HEO) microparticles. The morphological and structural characterizations demonstrate that the temperature of the annealing process, and the composition of the metal ions in the HE-Gly precursors play important roles in determining porosity, crystallinity, and phase separation in HEOs. In fact, HE-Gly exhibited a porous structure of spinel HEOs with secreted MgO phase after annealing process at 800 °C, while the annealing process at 400 °C led to a low-crystallinity spinel phase without phase segregation. Overall, this work describes HE-Gly as a new precursor for altering the composition, crystallinity, and porosity of HEOs. This strategy is scalable for potential high mass productions, paving a new path toward industrial application of high-entropy materials.

3.
Langmuir ; 37(30): 9059-9068, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34279100

ABSTRACT

The synthesis of high entropy oxide (HEO) nanoparticles (NPs) possesses many challenges in terms of process complexity and cost, scalability, tailoring nanoparticle morphology, and rapid synthesis. Herein, we report the synthesis of novel single-phase solid solution (Mn, Fe, Ni, Cu, Zn)3(O)4 quinary HEO NPs produced by a flame spray pyrolysis route. The aberration-corrected scanning transmission electron microscopy (STEM) technique is utilized to investigate the spinel crystal structure of synthesized HEO NPs, and energy-dispersive X-ray spectroscopy analysis confirmed the high entropy configuration of five metal elements in their oxide form within a single HEO nanoparticle. Selected area electron diffraction, X-ray diffraction, and Raman spectroscopy analysis results are in accordance with STEM results, providing the key attributes of a spinel crystal structure of HEO NPs. X-ray photoelectron spectroscopy results provide the insightful understanding of chemical oxidation states of individual elements and their possible cation occupancy sites in the spinel-structured HEO NPs.

4.
Sci Rep ; 8(1): 6591, 2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29700336

ABSTRACT

Solids composed of iron and sulfur are earth abundant and nontoxic, and can exhibit interesting and technologically important optical, electronic, and magnetic phenomena. However, the iron-sulfur (Fe-S) phase diagram is congested in regions of slight non-stoichiometric iron vacancies, and even when the iron atomic composition changes by even a few percent at standard temperature and pressure, there are myriad stable crystal phases that form with qualitatively different electronic properties. Here, we synthesized and characterized nanocrystals of the pyrrhotite-4M structure (Fe7S8) in an anhydrous oleylamine solvent. Upon heating from 140 °C to 180 °C, the solid sequentially transformed into two kinetically trapped FeS intermediate phases before reaching the pyrrhotite-4M final product. Finally, we assessed the effects of iron vacancies using the stoichiometric end-member, troilite, as a reference system. Density functional theory calculations show that iron vacancies in troilite shift the structure from hexagonal FeS to a monoclinic structure, similar to crystal structures of pyrrhotites, and suggest that this iron deficient troilite may be a stable intermediate between the two crystal structures. The calculations predict that defects also close the band gap in iron deficient troilite.

SELECTION OF CITATIONS
SEARCH DETAIL
...