Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Phys ; 11(1): 15, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38316677

ABSTRACT

BACKGROUND: In peptide receptor radionuclide therapy (PRRT), accurate quantification of kidney activity on post-treatment SPECT images paves the way for patient-specific treatment. Due to the limited spatial resolution of SPECT images, the partial volume effect (PVE) is a significant source of quantitative bias. In this study, we aimed to evaluate the performance and robustness of anatomy-based partial volume correction (PVC) algorithms to recover the accurate activity concentration of realistic kidney geometries on [Formula: see text]Lu SPECT images recorded under clinical conditions. METHODS: Based on the CT scan data from patients, three sets of fillable kidneys with surface-to-volume (S:V) ratios ranging from 1.5 to 2.8 cm-1, were 3D printed and attached in a IEC phantom. Quantitative [Formula: see text]Lu SPECT/CT acquisitions were performed on a GE Discovery NM CT 870 DR camera for the three modified IEC phantoms and for 6 different Target-To-Background ratios (TBRs: 2, 4, 6, 8, 10, 12). Two region-based (GTM and Labbé) and five voxel-based (GTM + MTC, Labbé + MTC, GTM + RBV, Labbé + RBV and IY) methods were evaluated with this data set. Additionally, the robustness of PVC methods to Point Spread Function (PSF) discrepancies, registration mismatches and background heterogeneity was evaluated. RESULTS: Without PVC, the average kidney RCs across all TBRs ranged from 0.66 ± 0.05 (smallest kidney) to 0.80 ± 0.03 (largest kidney). For a TBR of 12, all anatomy-based method were able to recover the kidneys activity concentration with an error < 6%. All methods result in a comparable decline in RC restoration with decreasing TBR. The Labbé method was the most robust against PSF and registration mismatches but was also the most sensitive to background heterogeneity. Among the voxel-based methods, MTC images were less uniform than RBV and IY images at the outer edge of high uptake areas (kidneys and spheres). CONCLUSION: Anatomy-based PVE correction allows for accurate SPECT quantification of the [Formula: see text]Lu activity concentration with realistic kidney geometries. Combined with recent progress in deep-learning algorithms for automatic anatomic segmentation of whole-body CT, these methods could be of particular interest for a fully automated OAR dosimetry pipeline with PVE correction.

2.
EJNMMI Phys ; 9(1): 33, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35503186

ABSTRACT

PURPOSE: Given the recent and rapid development of peptide receptor radionuclide therapy (PRRT), increasing emphasis should be placed on the early identification and quantification of therapeutic radiopharmaceutical (thRPM) extravasation during intravenous administration. Herein, we provide an analytical model of 177Lu-DOTA0-Tyr3-octreotate (Lutathera®) infusion for real-time detection and characterization of thRPM extravasation. METHODS: For 33 Lutathera®-based PRRT procedures using the gravity infusion method, equivalent dose rates (EDRs) were monitored at the patient's arm. Models of flow dynamics for nonextravasated and extravasated infusions were elaborated and compared to experimental data through an equivalent dose rate calibration. Nonextravasated infusion was modeled by assuming constant volume dilution of 177Lu activity concentration in the vial and Poiseuille-like laminar flow through the tubing and patient vein. Extravasated infusions were modeled according to their onset times by considering elliptically shaped extravasation region with different aspect ratios. RESULTS: Over the 33 procedures, the peak of the median EDR was reached 14 min after the start of the infusion with a value of 450 µSv h-1. On the basis of experimental measurements, 1 mSv h-1 was considered the empirical threshold for Lutathera® extravasation requiring cessation of the infusion and start again with a new route of injection. According to our model, the concentration of extravascular activity was directly related to the time of extravasation onset and its duration, a finding inherent in the gravity infusion method. This result should be considered when planning therapeutic strategy in the case of RPM extravasation because the local absorbed dose for ß-emitters is closely linked to activity concentration. For selected EDR values, charts of extravasated activity, volume, and activity concentration were computed for extravasation characterization. CONCLUSION: We proposed an analytical model of Lutathera® infusion and extravasation (gravity method) based on EDR monitoring. This approach could be useful for the early detection of thRPM extravasation and for the real-time assessment of activity concentration and volume accumulation in the extravascular medium.

SELECTION OF CITATIONS
SEARCH DETAIL
...