Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Respir Res ; 25(1): 3, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172839

ABSTRACT

Chronic lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis are incurable. Epithelial senescence, a state of dysfunctional cell cycle arrest, contributes to the progression of such diseases. Therefore, lung epithelial cells are a valuable target for therapeutic intervention. Here, we present a 3D airway lung organoid platform for the preclinical testing of active substances with regard to senescence, toxicity, and inflammation under standardized conditions in a 96 well format. Senescence was induced with doxorubicin and measured by activity of senescence associated galactosidase. Pharmaceutical compounds such as quercetin antagonized doxorubicin-induced senescence without compromising organoid integrity. Using single cell sequencing, we identified a subset of cells expressing senescence markers which was decreased by quercetin. Doxorubicin induced the expression of detoxification factors specifically in goblet cells independent of quercetin. In conclusion, our platform enables for the analysis of senescence-related processes and will allow the pre-selection of a wide range of compounds (e.g. natural products) in preclinical studies, thus reducing the need for animal testing.


Subject(s)
Cystic Fibrosis , Quercetin , Animals , Quercetin/metabolism , Quercetin/pharmacology , Cellular Senescence , Lung/metabolism , Cystic Fibrosis/metabolism , Gene Expression Profiling , Doxorubicin/pharmacology , Doxorubicin/metabolism , Organoids/metabolism
2.
Am J Respir Cell Mol Biol ; 70(3): 203-214, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38051640

ABSTRACT

Alveolar type 2 and club cells are part of the stem cell niche of the lung and their differentiation is required for pulmonary homeostasis and tissue regeneration. A disturbed crosstalk between fibroblasts and epithelial cells contributes to the loss of lung structure in chronic lung diseases. Therefore, it is important to understand how fibroblasts and lung epithelial cells interact during regeneration. Here, we analyzed the interaction of fibroblasts and the alveolar epithelium modeled in air-liquid interface cultures. Single-cell transcriptomics showed that cocultivation with fibroblasts leads to increased expression of type 2 markers in pneumocytes, activation of regulons associated with the maintenance of alveolar type 2 cells (e.g., Etv5), and transdifferentiation of club cells toward pneumocytes. This was accompanied by an intensified transepithelial barrier. Vice versa, the activation of NF-κB pathways and the CEBPB regulon and the expression of IL-6 and other differentiation factors (e.g., fibroblast growth factors) were increased in fibroblasts cocultured with epithelial cells. Recombinant IL-6 enhanced epithelial barrier formation. Therefore, in our coculture model, regulatory loops were identified by which lung epithelial cells mediate regeneration and differentiation of the alveolar epithelium in a cooperative manner with the mesenchymal compartment.


Subject(s)
Alveolar Epithelial Cells , Transcriptome , Animals , Mice , Transcriptome/genetics , Interleukin-6 , Epithelial Cells , Fibroblasts
3.
Cells ; 11(14)2022 07 06.
Article in English | MEDLINE | ID: mdl-35883573

ABSTRACT

IL-17 cytokines are expressed by numerous cells (e.g., gamma delta (γδ) T, innate lymphoid (ILC), Th17, epithelial cells). They contribute to the elimination of bacteria through the induction of cytokines and chemokines which mediate the recruitment of inflammatory cells to the site of infection. However, IL-17-driven inflammation also likely promotes the progression of chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), lung cancer, cystic fibrosis, and asthma. In this review, we highlight the role of IL-17 cytokines in chronic lung diseases.


Subject(s)
Interleukin-17 , Lung Diseases , Cytokines/metabolism , Cytokines/pharmacology , Humans , Immunity, Innate , Interleukin-17/metabolism , Interleukin-17/pharmacology , Lung Diseases/metabolism , Th17 Cells
4.
Microorganisms ; 9(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34576717

ABSTRACT

The epithelial cytokine interleukin-17C (IL-17C) mediates inflammation through the interleukin 17 receptor E (IL-17RE). Prior studies showed a detrimental role of IL-17C in the pathogenesis of immune-mediated skin diseases (e.g., psoriasis). Here, we examined the role of IL-17C/IL-17RE in wound closure in a Staphylococcus aureus wound infection model. We demonstrate that wound closure is significantly delayed in IL-17RE (Il-17re-/-)- and 17C (Il-17c-/-)-deficient mice. There was no significant difference between WT, Il-17re-/-, and Il-17c-/- mice in the absence of infection. Deficiency for IL-17RE and IL-17C did not significantly affect the elimination of bacteria. IL-17C expression was increased in the epidermis of human S. aureus-infected skin. Our results indicate that the IL-17C/IL-17RE axis contributes to the closure of infected wounds but does not contribute to the elimination of S. aureus.

5.
J Inflamm Res ; 14: 4651-4667, 2021.
Article in English | MEDLINE | ID: mdl-34552347

ABSTRACT

BACKGROUND: COVID-19 comprises several severity stages ranging from oligosymptomatic disease to multi-organ failure and fatal outcomes. The mechanisms why COVID-19 is a mild disease in some patients and progresses to a severe multi-organ and often fatal disease with respiratory failure are not known. Biomarkers that predict the course of disease are urgently needed. The aim of this study was to evaluate a large spectrum of established laboratory measurements. PATIENTS AND METHODS: Patients from the prospective PULMPOHOM and CORSAAR studies were recruited and comprised 35 patients with COVID-19, 23 with conventional pneumonia, and 28 control patients undergoing elective non-pulmonary surgery. Venous blood was used to measure the serum concentrations of 79 proteins by Luminex multiplex immunoassay technology. Distribution of biomarkers between groups and association with disease severity and outcomes were analyzed. RESULTS: The biomarker profiles between the three groups differed significantly with elevation of specific proteins specific for the respective conditions. Several biomarkers correlated significantly with disease severity and death. Uniform manifold approximation and projection (UMAP) analysis revealed a significant separation of the three disease groups and separated between survivors and deceased patients. Different models were developed to predict mortality based on the baseline measurements of several protein markers. A score combining IL-1ra, IL-8, IL-10, MCP-1, SCF and CA-9 was associated with significantly higher mortality (AUC 0.929). DISCUSSION: Several newly identified blood markers were significantly increased in patients with severe COVID-19 (AAT, EN-RAGE, myoglobin, SAP, TIMP-1, vWF, decorin) or in patients that died (IL-1ra, IL-8, IL-10, MCP-1, SCF, CA-9). The use of established assay technologies allows for rapid translation into clinical practice.

6.
Kidney Int ; 100(5): 1081-1091, 2021 11.
Article in English | MEDLINE | ID: mdl-34237325

ABSTRACT

Chronic kidney disease (CKD) represents a global public health problem with high disease related morbidity and mortality. Since CKD etiology is heterogeneous, early recognition of patients at risk for progressive kidney injury is important. Here, we evaluated the tubular epithelial derived glycoprotein dickkopf-3 (DKK3) as a urinary marker for the identification of progressive kidney injury in a non-CKD cohort of patients with chronic obstructive pulmonary disease (COPD) and in an experimental model. In COSYCONET, a prospective multicenter trial comprising 2,314 patients with stable COPD (follow-up 37.1 months), baseline urinary DKK3, proteinuria and estimated glomerular filtration rate (eGFR) were tested for their association with the risk of declining eGFR and the COPD marker, forced expiratory volume in one second. Baseline urinary DKK3 but not proteinuria or eGFR identified patients with a significantly higher risk for over a 10% (odds ratio: 1.54, 95% confidence interval: 1.13-2.08) and over a 20% (2.59: 1.28-5.25) decline of eGFR during follow-up. In particular, DKK3 was associated with a significantly higher risk for declining eGFR in patients with eGFR over 90 ml/min/1.73m2 and proteinuria under 30 mg/g. DKK3 was also associated with declining COPD marker (2.90: 1.70-4.68). The impact of DKK3 was further explored in wild-type and Dkk3-/- mice subjected to cigarette smoke-induced lung injury combined with a CKD model. In this model, genetic abrogation of DKK3 resulted in reduced pulmonary inflammation and preserved kidney function. Thus, our data highlight urinary DKK3 as a possible marker for early identification of patients with silent progressive CKD and for adverse outcomes in patients with COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Renal Insufficiency, Chronic , Animals , Disease Progression , Glomerular Filtration Rate , Humans , Kidney , Mice , Prospective Studies , Pulmonary Disease, Chronic Obstructive/diagnosis , Renal Insufficiency, Chronic/diagnosis
8.
Ann Anat ; 237: 151729, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33798693

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is among the leading causes of death worldwide and imposes a high economic burden to the health systems. COPD is characterized by chronic inflammation of the lung leading to airflow limitation, alveolar tissue destruction, and emphysema. Therefore, anti-inflammatory therapies for the treatment of COPD are of interest. In this review, we focus on the function of the IL-17 cytokines IL-17A and IL-17C, both known to mediate the recruitment of inflammatory cells, in the pathogenesis of COPD. We highlight that the expression of IL-17A and IL-17C is induced by pathogens frequently found in lungs of COPD patients and that targeting IL-17-signaling is an interesting option for the treatment of acute exacerbation of COPD.


Subject(s)
Interleukin-17 , Pulmonary Disease, Chronic Obstructive , Animals , Cytokines , Humans , Lung , Mice , Mice, Inbred C57BL
9.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L958-L968, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33759577

ABSTRACT

Chronic obstructive lung disease (COPD) and lung cancer are both caused by smoking and often occur as comorbidity. The programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) axis is an important canonic immunoregulatory pathway, and antibodies that specifically block PD-1 or PD-L1 have demonstrated efficacy as therapeutic agents for non-small cell lung cancer. The role of the PD-1/PD-L1 axis in the pathogenesis of COPD is unknown. Here, we analyzed the function of the PD-1/PD-L1 axis in preclinical COPD models and evaluated the concentrations of PD-1 and PD-L1 in human serum and bronchoalveolar lavage (BAL) fluids as biomarkers for COPD. Anti-PD-1 treatment decreased lung damage and neutrophilic inflammation in mice chronically exposed to cigarette smoke (CS) or nontypeable Haemophilus influenzae (NTHi). Ex vivo stimulated macrophages obtained from anti-PD-1-treated mice released reduced amounts of inflammatory cytokines. PD-L1 concentrations correlated positively with PD-1 concentrations in human serum and BAL fluids. Lung sections obtained from patients with COPD stained positive for PD-L1. Our data indicate that the PD-1/PD-L1 axis is involved in developing inflammation and tissue destruction in COPD. Inflammation-induced activation of the PD-1 pathway may contribute to disease progression.


Subject(s)
Lung/metabolism , Macrophages, Alveolar/metabolism , Neutrophils/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Pulmonary Disease, Chronic Obstructive/metabolism , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Disease Models, Animal , Female , Humans , Inflammation/metabolism , Inflammation/pathology , Lung/pathology , Macrophages, Alveolar/pathology , Male , Mice , Neutrophils/pathology , Programmed Cell Death 1 Receptor/metabolism , Prospective Studies , Pulmonary Disease, Chronic Obstructive/pathology
10.
PLoS One ; 16(1): e0243484, 2021.
Article in English | MEDLINE | ID: mdl-33411748

ABSTRACT

Neutrophilic inflammation results in loss of lung function in chronic obstructive pulmonary disease (COPD). Gram-negative bacteria, such as nontypeable Haemophilus influenzae (NTHi), trigger acute exacerbations of COPD (AECOPD) and contribute to chronic lung inflammation. The pro-inflammatory cytokine interleukin-17C (IL-17C) is expressed by airway epithelial cells and regulates neutrophilic chemotaxis. Here, we explored the function of IL-17C in NTHi- and cigarette smoke (CS)-induced models of COPD. Neutrophilic inflammation and tissue destruction were decreased in lungs of IL-17C-deficient mice (Il-17c-/-) chronically exposed to NTHi. Numbers of pulmonary neutrophils were decreased in Il-17c-/- mice after acute exposure to the combination of NTHi and CS. However, Il-17c-/- mice were not protected from CS-induced lung inflammation. In a preliminary patient study, we show that IL-17C is present in sputum samples obtained during AECOPD and associates with disease severity. Concentrations of IL-17C were significantly increased during advanced COPD (GOLD III/IV) compared to moderate COPD (GOLD I/II). Concentrations of IL-17A and IL-17E did not associate with disease severity. Our data suggest that IL-17C promotes harmful pulmonary inflammation triggered by bacteria in COPD.


Subject(s)
Disease Progression , Haemophilus influenzae/physiology , Interleukin-17/metabolism , Lung/microbiology , Lung/pathology , Pneumonia/microbiology , Pulmonary Disease, Chronic Obstructive/microbiology , Sputum/microbiology , Acute Disease , Aged , Animals , Cigarette Smoking/adverse effects , Cytokines/metabolism , Female , Humans , Male , Mice, Inbred C57BL , Neutrophils/pathology
11.
Aging Cell ; 19(11): e13264, 2020 11.
Article in English | MEDLINE | ID: mdl-33128835

ABSTRACT

One of the major pathological hallmarks of Alzheimer´s disease (AD) is an accumulation of amyloid-ß (Aß) in brain tissue leading to formation of toxic oligomers and senile plaques. Under physiological conditions, a tightly balanced equilibrium between Aß-production and -degradation is necessary to prevent pathological Aß-accumulation. Here, we investigate the molecular mechanism how insulin-degrading enzyme (IDE), one of the major Aß-degrading enzymes, is regulated and how amyloid precursor protein (APP) processing and Aß-degradation is linked in a regulatory cycle to achieve this balance. In absence of Aß-production caused by APP or Presenilin deficiency, IDE-mediated Aß-degradation was decreased, accompanied by a decreased IDE activity, protein level, and expression. Similar results were obtained in cells only expressing a truncated APP, lacking the APP intracellular domain (AICD) suggesting that AICD promotes IDE expression. In return, APP overexpression mediated an increased IDE expression, comparable results were obtained with cells overexpressing C50, a truncated APP representing AICD. Beside these genetic approaches, also AICD peptide incubation and pharmacological inhibition of the γ-secretase preventing AICD production regulated IDE expression and promoter activity. By utilizing CRISPR/Cas9 APP and Presenilin knockout SH-SY5Y cells results were confirmed in a second cell line in addition to mouse embryonic fibroblasts. In vivo, IDE expression was decreased in mouse brains devoid of APP or AICD, which was in line with a significant correlation of APP expression level and IDE expression in human postmortem AD brains. Our results show a tight link between Aß-production and Aß-degradation forming a regulatory cycle in which AICD promotes Aß-degradation via IDE and IDE itself limits its own production by degrading AICD.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/metabolism , Insulysin/metabolism , Alzheimer Disease/pathology , Humans , Signal Transduction
12.
Respir Res ; 21(1): 222, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32847538

ABSTRACT

Cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are associated with acute and chronic bacterial infections of the lung. Excessive differentiation of basal cells to mucus-producing goblet cells can result in mucus hyperproduction and loss of mucociliary clearance in the airways of CF and COPD patients. Here, we aimed to investigate the effect of pathogen-associated molecular patterns (PAMPs) on the differentiation of human 3D bronchospheres. Primary human bronchial epithelial cells (HBECs) were differentiated to bronchospheres in the presence of bacterial flagellin and LPS and the synthetic Toll-like receptor (TLR) ligands Pam3CSK4 (TLR-2) and polyinosinic:polycytidylic acid (pIC, TLR-3). Electron and fluorescence microscopy showed that the differentiation of bronchospheres associated with the formation of lumina and appearance of cilia within 30 days after seeding. Incubation with flagellin resulted in a decreased formation of lumina and loss of cilia formation. Incubation with Pam3CSK, pIC, and LPS did not significantly affect formation of lumina and ciliation. Mucus production was strongly increased in response to flagellin and, to a lesser degree, in response to Pam3CSK4. Our results indicate that bacterial factors, such as flagellin, drive the differentiation of the respiratory epithelium towards mucus hyperproduction.


Subject(s)
Bronchi/metabolism , Flagellin/metabolism , Mucociliary Clearance/physiology , Mucus/metabolism , Organoids/metabolism , Respiratory Mucosa/metabolism , Bronchi/microbiology , Cells, Cultured , Flagellin/administration & dosage , Humans , Mucus/microbiology , Organoids/microbiology , Organoids/ultrastructure , Respiratory Mucosa/microbiology , Respiratory Mucosa/ultrastructure
13.
Respir Res ; 21(1): 176, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32641167

ABSTRACT

BACKGROUND: The interleukin 17 receptor E (IL-17RE) is specific for the epithelial cytokine interleukin-17C (IL-17C). Asthma exacerbations are frequently caused by viral infections. Polyinosinic:polycytidylic acid (pIC) mimics viral infections through binding to pattern recognition receptors (e.g. TLR-3). We and others have shown that pIC induces the expression of IL-17C in airway epithelial cells. Using different mouse models, we aimed to investigate the function of IL-17RE in the development of experimental allergic asthma and acute exacerbation thereof. METHODS: Wild-type (WT) and IL-17RE deficient (Il-17re-/-) mice were sensitized and challenged with OVA to induce allergic airway inflammation. pIC or PBS were applied intranasally when allergic airway inflammation had been established. Pulmonary expression of inflammatory mediators, numbers of inflammatory cells, and airway hyperresponsiveness (AHR) were analyzed. RESULTS: Ablation of IL-17RE did not affect the development of OVA-induced allergic airway inflammation and AHR. pIC induced inflammation independent of IL-17RE in the absence of allergic airway inflammation. Treatment of mice with pIC exacerbated pulmonary inflammation in sensitized and OVA-challenged mice in an IL-17RE-dependent manner. The pIC-induced expression of cytokines (e.g. keratinocyte-derived chemokine (KC), granulocyte-colony stimulating factor (G-CSF)) and recruitment of neutrophils were decreased in Il-17re-/- mice. pIC-exacerbated AHR was partially decreased in Il-17re-/- mice. CONCLUSIONS: Our results indicate that IL-17RE mediates virus-triggered exacerbations but does not have a function in the development of allergic lung disease.


Subject(s)
Asthma/chemically induced , Asthma/physiopathology , Poly I-C , Receptors, Interleukin-17/metabolism , Animals , Bronchoalveolar Lavage Fluid/cytology , Cytokines/biosynthesis , Epithelial Cells , Inflammation Mediators/metabolism , Interleukin-17 , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Ovalbumin/immunology , Receptors, Interleukin-17/genetics , Respiratory Hypersensitivity/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism
14.
Infect Immun ; 87(11)2019 11.
Article in English | MEDLINE | ID: mdl-31481409

ABSTRACT

Neutrophils contribute to lung injury in acute pneumococcal pneumonia. The interleukin 17 receptor E (IL-17RE) is the functional receptor for the epithelial-derived cytokine IL-17C, which is known to mediate innate immune functions. The aim of this study was to investigate the contribution of IL-17RE/IL-17C to pulmonary inflammation in a mouse model of acute Streptococcus pneumoniae pneumonia. Numbers of neutrophils and the expression levels of the cytokine granulocyte colony-stimulating factor (G-CSF) and tumor necrosis factor alpha (TNF-α) were decreased in lungs of IL-17RE-deficient (Il-17re-/- ) mice infected with S. pneumoniae Numbers of alveolar macrophages rapidly declined in both wild-type (WT) and Il-17re-/- mice and recovered 72 h after infection. There were no clear differences in the elimination of bacteria and numbers of blood granulocytes between infected WT and Il-17re-/- mice. The fractions of granulocyte-monocyte progenitors (GMPs) were significantly reduced in infected Il-17re-/- mice. Numbers of neutrophils were significantly reduced in lungs of mice deficient for IL-17C 24 h after infection with S. pneumoniae These data indicate that the IL-17C/IL-17RE axis promotes the recruitment of neutrophils without affecting the recovery of alveolar macrophages in the acute phase of S. pneumoniae lung infection.


Subject(s)
Interleukin-17/metabolism , Neutrophils/physiology , Pneumonia, Pneumococcal/metabolism , Receptors, Interleukin-17/metabolism , Animals , Cell Differentiation , Female , Granulocytes , Interleukin-17/genetics , Mice , Mice, Knockout , Pneumonia, Pneumococcal/microbiology , Receptors, Interleukin-17/genetics , Streptococcus pneumoniae
15.
Sci Rep ; 9(1): 10353, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31316109

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is associated with neutrophilic lung inflammation and CD8 T cell exhaustion and is an important risk factor for the development of non-small cell lung cancer (NSCLC). The clinical response to programmed cell death-1 (PD-1) blockade in NSCLC patients is variable and likely affected by a coexisting COPD. The pro-inflammatory cytokine interleukin-17C (IL-17C) promotes lung inflammation and is present in human lung tumors. Here, we used a Kras-driven lung cancer model to examine the function of IL-17C in inflammation-promoted tumor growth. Genetic ablation of Il-17c resulted in a decreased recruitment of inflammatory cells into the tumor microenvironment, a decreased expression of tumor-promoting cytokines (e.g. interleukin-6 (IL-6)), and a reduced tumor proliferation in the presence of Haemophilus influenzae- (NTHi) induced COPD-like lung inflammation. Chronic COPD-like inflammation was associated with the expression of PD-1 in CD8 lymphocytes and the membrane expression of the programmed death ligand (PD-L1) independent of IL-17C. Tumor growth was decreased in Il-17c deficient mice but not in wildtype mice after anti-PD-1 treatment. Our results suggest that strategies targeting innate immune mechanisms, such as blocking of IL-17C, may improve the response to anti-PD-1 treatment in lung cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Immunity, Innate , Interleukin-17/physiology , Lung Neoplasms/drug therapy , Neoplasm Proteins/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/physiology , Animals , B7-H1 Antigen/biosynthesis , B7-H1 Antigen/genetics , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/etiology , Carcinoma, Non-Small-Cell Lung/immunology , Cell Line, Tumor , Cytokines/physiology , Female , Genes, ras , Humans , Interleukin-17/deficiency , Interleukin-17/genetics , Interleukin-17/pharmacology , Lung Neoplasms/etiology , Lung Neoplasms/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neutrophils/physiology , Programmed Cell Death 1 Receptor/biosynthesis , Programmed Cell Death 1 Receptor/genetics , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/immunology , Recombinant Proteins/pharmacology , Tumor Microenvironment
16.
Front Microbiol ; 7: 658, 2016.
Article in English | MEDLINE | ID: mdl-27242689

ABSTRACT

Eggerthella and Slackia spp. are gut associated bacteria that have been suggested to play roles in host lipid and xenobiotic metabolism. A quantitative PCR method for the selective enumeration of bacteria belonging to either the genus Eggerthella or Slackia was developed in order to establish the numbers of these bacteria occurring in human feces. The primers developed for selective amplification of these genera were tested first in conventional PCR to test for their specificity. Representative species of Eggerthella and Slackia, as well as closely related genera of the Coriobacteriia, were included in the investigation. The selected primers were shown to be capable of specific amplification of species of the genera Eggerthella and Slackia, but not all species of the genera may be amplified by the respective primers. Their use in qPCR experiments to assess the levels of Slackia equolifaciens and Eggerthella lenta in the feces of 19 human volunteers showed they occurred at mean counts of 7 × 10(5) and 3.1 × 10(5) CFU/g for Eggerthella spp. and Slackia spp., respectively. Electron microscopy investigations showed that while E. lenta cells exhibited slender and very regular shaped rods, Slackia cells showed a remarkably pleomorphic phenotype. Both species did not appear to have fimbriae or pili. Some S. equolifaciens cells showed a characteristic "ribbon" of presumably extracellular material around the cells, particularly at the areas of cell division. The two species also differed markedly in their adhesion behavior to Caco-2 cells in cell culture, as E. lenta DSMZ 15644 showed a high adhesion capacity of 74.2% adherence of the bacterial cells added to Caco-2 cells, while S. equolifaciens DSM 24851(T) on the other hand showed only low adhesion capability, as 6.1% of bacterial cells remained bound. Speculatively, this may imply that the ecological compartments where these bacteria reside in the gut may be different, i.e., E. lenta may be associated more with the gut wall, while Slackia may be free living in the lumen.

SELECTION OF CITATIONS
SEARCH DETAIL
...