Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
PLoS One ; 19(7): e0306728, 2024.
Article in English | MEDLINE | ID: mdl-38980880

ABSTRACT

OBJECTIVE: We investigated the performance of enzyme linked immunospot (ELISpot) assay for the diagnosis of invasive aspergillosis (IA) in high-risk patients with hematologic malignancies. METHODS: We prospectively enrolled two cohorts of patients undergoing intensive myelosuppressive or immunosuppressive treatments at high risk for IA. ELISpot was performed to detect Aspergillus-specific T cells producing Interleukin-10. RESULTS: In the discovery cohort, a derived cut-off of 40 spot forming cells (SFCs)/106 PBMCs has shown to correctly classify IA cases with a sensitivity and specificity of 89.5% and 88.6%, respectively. This cut-off is lowered to 25 SFC when considering the subset of possible IA patients, with sensitivity and specificity of 76% and 93%, respectively. The application of the 40 SFCs cut-off to the validation cohort resulted in a positivity rate of 83.3% in proven/probable cases and a negativity rate of 92.5% in possible/non-IA cases. Adopting the 25 SCFs cut-off, the assay resulted positive in 83.3% of proven/probable cases while it resulted negative in 66.7% of possible/non-IA cases. CONCLUSIONS: ELISpot shows promises in the diagnosis of IA and the possibility to use two distinct cut-offs with similar diagnostic performances according to patients' different pre-test probability of infection can widen its use in patients at risk.


Subject(s)
Enzyme-Linked Immunospot Assay , Humans , Enzyme-Linked Immunospot Assay/methods , Male , Female , Middle Aged , Aged , Adult , Prospective Studies , Aspergillosis/diagnosis , Aspergillosis/immunology , Interleukin-10/immunology , Hematologic Neoplasms/immunology , Hematologic Neoplasms/diagnosis , Sensitivity and Specificity , T-Lymphocytes/immunology
3.
Int J Lab Hematol ; 46(3): 451-456, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38185475

ABSTRACT

BACKGROUND: Upon infection activated plasma cells produce large quantities of antibodies which can lead to the emergence of a monoclonal component (MC), detectable by serum protein electrophoresis (SPEP). This study aims to investigate any correlation between SARS-CoV-2 infection and MC development and, if identified, whether it persists during follow-up. METHODS: SPEPs of 786 patients admitted to hospitals between March 01 2020 and March 31 2022 were evaluated. Positive (SARS-CoV-2+) and negative (SARS-CoV-2-) patients to nasopharyngeal swab for SARS-CoV-2 by RT-PCR were included. The persistence/new occurrence of MC was investigated for all patients during follow-up. Patient groups were compared by chi-square analysis. RESULTS: MC was identified in 12% of all patients admitted to hospital, of which 28.7% were SARS-CoV-2+. The most common immunoglobulin isotype in both groups was IgG-k. There was no correlation between MC development and SARS-CoV-2 infection (p = 0.173). Furthermore, the risk of MC persistence in SARS-CoV-2-negative patients was revealed to be higher than in the SARS-CoV-2+ at follow-up (HR = 0.591, p = 0.05). CONCLUSIONS: Our study suggests that the detection of MC during SARS-CoV-2 infection is most likely due to the hyperstimulation of the humoral immune system, as also occurs in other viral infections.


Subject(s)
COVID-19 , Paraproteinemias , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/blood , COVID-19/diagnosis , SARS-CoV-2/immunology , Male , Female , Middle Aged , Aged , Paraproteinemias/blood , Adult , Aged, 80 and over , Immunoglobulin G/blood , Immunoglobulin G/immunology , Blood Protein Electrophoresis
5.
Cancers (Basel) ; 15(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37345068

ABSTRACT

Acute myeloid leukemia (AML) with nucleophosmin (NPM1) genetic mutations is the most common subtype in adult patients. Refractory or relapsed disease in unfit patients or after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a poor prognosis. NPM1-mutated protein, stably expressed on tumor cells but not on normal tissues, may serve as an ideal target for NPM1-mutated AML immunotherapy. The study aim was to investigate the feasibility of producing mutated-NPM1-specific cytotoxic T cells (CTLs) suitable for somatic cell therapy to prevent or treat hematologic relapse in patients with NPM1-mutated AML. T cells were expanded or primed from patient or donor peripheral blood mononuclear cells by NPM1-mutated protein-derived peptides, and tested for leukemia antigen-targeted cytotoxic activity, cytokine production and hematopoietic precursor inhibitory effect. We found that mutated-NPM1-specific CTLs, displaying specific cytokine production and high-level cytotoxicity against patients' leukemia blasts, and limited inhibitory activity in clonogenic assays, could be obtained from both patients and donors. The polyfunctional mutated-NPM1-specific CTLs included both CD8+ and CD4+ T cells endowed with strong lytic capacity. Our results suggest that mutated-NPM1-targeted CTLs may be a useful therapeutic option to control low-tumor burden relapse following conventional chemotherapy in older NPM1-mutated AML patients or eradicate persistent MRD after HSCT.

6.
Br J Haematol ; 202(4): 715-717, 2023 08.
Article in English | MEDLINE | ID: mdl-37092558

ABSTRACT

The era of AI-based methods to improve flow cytometry diagnostics in haematology is now at the beginning. The study by Nguyen and colleagues explored an emerging machine learning approach to assess phenotypic MRD in chronic lymphocytic leukaemia patients, showing that such AI-driven computational analysis may represent a robust and feasible tool for advanced diagnostics of haematological malignancies. Commentary on: Nguyen et al. Computational flow cytometry provides accurate assessment of measurable residual disease in chronic lymphocytic leukaemia. Br J Haematol 2023;202:760-770.


Subject(s)
Hematologic Neoplasms , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Flow Cytometry/methods , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Artificial Intelligence , Neoplasm, Residual/diagnosis
7.
Cancers (Basel) ; 15(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36765928

ABSTRACT

Multiple Myeloma (MM) typically originates from underlying precursor conditions, known as Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM). Validated risk factors, related to the main features of the clonal plasma cells, are employed in the current prognostic models to assess long-term probabilities of progression to MM. In addition, new prognostic immunologic parameters, measuring protective MM-specific T-cell responses, could help to identify patients with shorter time-to-progression. In this report, we described a novel Multi-antigenic Myeloma-specific (MaMs) T-cell assay, based on ELISpot technology, providing simultaneous evaluation of T-cell responses towards ten different MM-associated antigens. When performed during long-term follow-up (mean 28 months) of 33 patients with either MGUS or SMM, such deca-antigenic myeloma-specific immunoassay allowed to significantly distinguish between stable vs. progressive disease (p < 0.001), independently from the Mayo Clinic risk category. Here, we report the first clinical experience showing that a wide (multi-antigen), standardized (irrespective to patients' HLA), MM-specific T-cell assay may routinely be applied, as a promising prognostic tool, during the follow-up of MGUS/SMM patients. Larger studies are needed to improve the antigenic panel and further explore the prognostic value of MaMs test in the risk assessment of patients with monoclonal gammopathies.

8.
Clin Exp Med ; 23(4): 1171-1180, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36495369

ABSTRACT

The trajectory of B cell development goes through subsequent steps governed by complex genetic programs, strictly regulated by multiple transcription factors. Interferon regulatory factor 4 (IRF4) regulates key points from pre-B cell development and receptor editing to germinal center formation, class-switch recombination and plasma cell differentiation. The pleiotropic ability of IRF4 is mediated by its "kinetic control", allowing different IRF4 expression levels to activate distinct genetic programs due to modulation of IRF4 DNA-binding affinity. IRF4 is implicated in B cell malignancies, acting both as tumor suppressor and as tumor oncogene in different types of precursors and mature B cell neoplasia. Here, we summarize the complexity of IRF4 functions related to different DNA-binding affinity, multiple IRF4-specific target DNA motif, and interactions with transcriptional partners. Moreover, we describe the unique role of IRF4 in acute leukemias and B cell mature neoplasia, focusing on pathogenetic implications and possible therapeutic strategies in multiple myeloma and chronic lymphocytic leukemia.


Subject(s)
Germinal Center , Neoplasms , Humans , Cell Differentiation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , DNA/metabolism
10.
Int J Mol Sci ; 23(9)2022 May 08.
Article in English | MEDLINE | ID: mdl-35563634

ABSTRACT

Multiple Myeloma (MM) is a malignant growth of clonal plasma cells, typically arising from asymptomatic precursor conditions, namely monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM). Profound immunological dysfunctions and cytokine deregulation are known to characterize the evolution of the disease, allowing immune escape and proliferation of neoplastic plasma cells. In the past decades, several studies have shown that the immune system can recognize MGUS and MM clonal cells, suggesting that anti-myeloma T cell immunity could be harnessed for therapeutic purposes. In line with this notion, chimeric antigen receptor T cell (CAR-T) therapy is emerging as a novel treatment in MM, especially in the relapsed/refractory disease setting. In this review, we focus on the pivotal contribution of T cell impairment in the immunopathogenesis of plasma cell dyscrasias and, in particular, in the disease progression from MGUS to SMM and MM, highlighting the potentials of T cell-based immunotherapeutic approaches in these settings.


Subject(s)
Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Paraproteinemias , Smoldering Multiple Myeloma , Disease Progression , Humans , Monoclonal Gammopathy of Undetermined Significance/pathology , Multiple Myeloma/pathology , Multiple Myeloma/therapy , Paraproteinemias/therapy , T-Lymphocytes/pathology
11.
Cells ; 11(6)2022 03 16.
Article in English | MEDLINE | ID: mdl-35326454

ABSTRACT

In recent years, the introduction of new drugs targeting Bruton's tyrosine kinase (BTK) has allowed dramatic improvement in the prognosis of patients with chronic lymphocytic leukemia (CLL) and other B-cell neoplasms. Although these small molecules were initially considered less immunosuppressive than chemoimmunotherapy, an increasing number of reports have described the occurrence of unexpected opportunistic fungal infections, in particular invasive aspergillosis (IA). BTK represents a crucial molecule in several signaling pathways depending on different immune receptors. Based on a variety of specific off-target effects on innate immunity, namely on neutrophils, monocytes, pulmonary macrophages, and nurse-like cells, ibrutinib has been proposed as a new host factor for the definition of probable invasive pulmonary mold disease. The role of platelets in the control of fungal growth, through granule-dependent mechanisms, was described in vitro almost two decades ago and is, so far, neglected by experts in the field of clinical management of IA. In the present study, we confirm the antifungal role of platelets, and we show, for the first time, that the exposure to BTK inhibitors impairs several immune functions of platelets in response to Aspergillus fumigatus, i.e., the ability to adhere to conidia, activation (as indicated by reduced expression of P-selectin), and direct killing activity. In conclusion, our experimental data suggest that antiplatelet effects of BTK inhibitors may contribute to an increased risk for IA in CLL patients.


Subject(s)
Aspergillosis , Invasive Fungal Infections , Leukemia, Lymphocytic, Chronic, B-Cell , Agammaglobulinaemia Tyrosine Kinase/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/metabolism , Blood Platelets/metabolism , Humans , Invasive Fungal Infections/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Protein Kinase Inhibitors/therapeutic use
14.
Int J Mol Sci ; 22(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34502069

ABSTRACT

The C-terminal aminoacidic sequence from NPM1-mutated protein, absent in normal human tissues, may serve as a leukemia-specific antigen and can be considered an ideal target for NPM1-mutated acute myeloid leukemia (AML) immunotherapy. Different in silico instruments and in vitro/ex vivo immunological platforms have identified the most immunogenic epitopes from NPM1-mutated protein. Spontaneous development of endogenous NPM1-mutated-specific cytotoxic T cells has been observed in patients, potentially contributing to remission maintenance and prolonged survival. Genetically engineered T cells, namely CAR-T or TCR-transduced T cells, directed against NPM1-mutated peptides bound to HLA could prospectively represent a promising therapeutic approach. Although either adoptive or vaccine-based immunotherapies are unlikely to be highly effective in patients with full-blown leukemia, these strategies, potentially in combination with immune-checkpoint inhibitors, could be promising in maintaining remission or preemptively eradicating persistent measurable residual disease, mainly in patients ineligible for allogeneic hematopoietic stem cell transplant (HSCT). Alternatively, neoantigen-specific donor lymphocyte infusion derived from healthy donors and targeting NPM1-mutated protein to selectively elicit graft-versus-leukemia effect may represent an attractive option in subjects experiencing post-HSCT relapse. Future studies are warranted to further investigate dynamics of NPM1-mutated-specific immunity and explore whether novel individualized immunotherapies may have potential clinical utility in NPM1-mutated AML patients.


Subject(s)
Antigens, Neoplasm/immunology , Leukemia, Myeloid, Acute/immunology , Nuclear Proteins/genetics , T-Lymphocytes/immunology , Animals , Humans , Immunotherapy/methods , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mutation , Nuclear Proteins/immunology , Nucleophosmin
15.
Cancers (Basel) ; 13(18)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34572809

ABSTRACT

Along with the evolution of immunophenotypic and molecular diagnostics, the assessment of Minimal Residual Disease (MRD) has progressively become a keystone in the clinical management of hematologic malignancies, enabling valuable post-therapy risk stratifications and guiding risk-adapted therapeutic approaches. However, specific prognostic values of MRD in different hematological settings, as well as its appropriate clinical uses (basically, when to measure it and how to deal with different MRD levels), still need further investigations, aiming to improve standardization and harmonization of MRD monitoring protocols and MRD-driven therapeutic strategies. Currently, MRD measurement in hematological neoplasms with bone marrow involvement is based on advanced highly sensitive methods, able to detect either specific genetic abnormalities (by PCR-based techniques and next-generation sequencing) or tumor-associated immunophenotypic profiles (by multiparametric flow cytometry, MFC). In this review, we focus on the growing clinical role for MFC-MRD diagnostics in hematological malignancies-from acute myeloid and lymphoblastic leukemias (AML, B-ALL and T-ALL) to chronic lymphocytic leukemia (CLL) and multiple myeloma (MM)-providing a comparative overview on technical aspects, clinical implications, advantages and pitfalls of MFC-MRD monitoring in different clinical settings.

16.
Sci Rep ; 11(1): 12716, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135448

ABSTRACT

Monocyte Distribution Width (MDW), a new cytometric parameter correlating with cytomorphologic changes occurring upon massive monocyte activation, has recently emerged as promising early biomarker of sepsis. Similar to sepsis, monocyte/macrophage subsets are considered key mediators of the life-threatening hyper-inflammatory disorder characterizing severe COVID-19. In this study, we longitudinally analyzed MDW values in a cohort of 87 COVID-19 patients consecutively admitted to our hospital, showing significant correlations between MDW and common inflammatory markers, namely CRP (p < 0.001), fibrinogen (p < 0.001) and ferritin (p < 0.01). Moreover, high MDW values resulted to be prognostically associated with fatal outcome in COVID-19 patients (AUC = 0.76, 95% CI: 0.66-0.87, sensitivity 0.75, specificity 0.70, MDW threshold 26.4; RR = 4.91, 95% CI: 1.73-13.96; OR = 7.14, 95% CI: 2.06-24.71). This pilot study shows that MDW can be useful in the monitoring of COVID-19 patients, as this innovative hematologic biomarker is: (1) easy to obtain, (2) directly related to the activation state of a fundamental inflammatory cell subset (i.e. monocytes, pivotal in both cytokine storm and sepsis immunopathogenesis), (3) well correlated with clinical severity of COVID-19-associated inflammatory disorder, and, in turn, (4) endowed with relevant prognostic significance. Additional studies are needed to define further the clinical impact of MDW testing in the management of COVID-19 patients.


Subject(s)
COVID-19/blood , Cell Size , Monocytes/pathology , SARS-CoV-2 , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/epidemiology , COVID-19/virology , Female , Ferritins/blood , Fibrinogen/analysis , Humans , Inflammation/blood , Italy/epidemiology , Longitudinal Studies , Male , Middle Aged , Patient Admission , Pilot Projects , Prognosis , Retrospective Studies , Sensitivity and Specificity , Young Adult
17.
Int J Mol Sci ; 22(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672997

ABSTRACT

The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.


Subject(s)
Hematopoietic Stem Cells/immunology , Immunotherapy/methods , Inflammation/immunology , Myeloproliferative Disorders/therapy , T-Lymphocytes/immunology , Tumor Microenvironment/immunology , Calreticulin/genetics , Calreticulin/immunology , Calreticulin/metabolism , Hematopoietic Stem Cells/metabolism , Humans , Inflammation/genetics , Janus Kinase 2/genetics , Janus Kinase 2/immunology , Janus Kinase 2/metabolism , Mutation/immunology , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/immunology , Philadelphia Chromosome , T-Lymphocytes/metabolism , Tumor Microenvironment/genetics
18.
Int J Mol Sci ; 21(23)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255988

ABSTRACT

Nucleophosmin (NPM1) gene mutations rarely occur in non-acute myeloid neoplasms (MNs) with <20% blasts. Among nearly 10,000 patients investigated so far, molecular analyses documented NPM1 mutations in around 2% of myelodysplastic syndrome (MDS) cases, mainly belonging to MDS with excess of blasts, and 3% of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) cases, prevalently classified as chronic myelomonocytic leukemia. These uncommon malignancies are associated with an aggressive clinical course, relatively rapid progression to overt acute myeloid leukemia (AML) and poor survival outcomes, raising controversies on their classification as distinct clinico-pathologic entities. Furthermore, fit patients with NPM1-mutated MNs with <20% blasts could benefit most from upfront intensive chemotherapy for AML rather than from moderate intensity MDS-directed therapies, although no firm conclusion can currently be drawn on best therapeutic approaches, due to the limited available data, obtained from small and mainly retrospective series. Caution is also suggested in definitely diagnosing NPM1-mutated MNs with blast count <20%, since NPM1-mutated AML cases frequently present dysplastic features and multilineage bone marrow cells showing abnormal cytoplasmic NPM1 protein delocalization by immunohistochemical staining, therefore belonging to NPM1-mutated clone regardless of blast morphology. Further prospective studies are warranted to definitely assess whether NPM1 mutations may become sufficient to diagnose AML, irrespective of blast percentage.


Subject(s)
Blast Crisis/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mutation/genetics , Nuclear Proteins/genetics , Animals , Disease Models, Animal , Hematopoiesis/genetics , Humans , Nucleophosmin
19.
EMBO Mol Med ; 12(12): e13001, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33078545

ABSTRACT

In patients infected by SARS-CoV-2 who experience an exaggerated inflammation leading to pneumonia, monocytes likely play a major role but have received poor attention. Thus, we analyzed peripheral blood monocytes from patients with COVID-19 pneumonia and found that these cells show signs of altered bioenergetics and mitochondrial dysfunction, had a reduced basal and maximal respiration, reduced spare respiratory capacity, and decreased proton leak. Basal extracellular acidification rate was also diminished, suggesting reduced capability to perform aerobic glycolysis. Although COVID-19 monocytes had a reduced ability to perform oxidative burst, they were still capable of producing TNF and IFN-γ in vitro. A significantly high amount of monocytes had depolarized mitochondria and abnormal mitochondrial ultrastructure. A redistribution of monocyte subsets, with a significant expansion of intermediate/pro-inflammatory cells, and high amounts of immature monocytes were found, along with a concomitant compression of classical monocytes, and an increased expression of inhibitory checkpoints like PD-1/PD-L1. High plasma levels of several inflammatory cytokines and chemokines, including GM-CSF, IL-18, CCL2, CXCL10, and osteopontin, finally confirm the importance of monocytes in COVID-19 immunopathogenesis.


Subject(s)
COVID-19/pathology , Energy Metabolism/physiology , Mitochondria/metabolism , Monocytes/metabolism , Adult , Aged , Aged, 80 and over , COVID-19/virology , Case-Control Studies , Chemokines/blood , Cytokines/blood , Female , Humans , Male , Middle Aged , Mitochondria/ultrastructure , Monocytes/cytology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...