Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
J Fluid Mech ; 9862024 May 10.
Article in English | MEDLINE | ID: mdl-38764611

ABSTRACT

Studying liquid jet impacts on a liquid pool is crucial for various engineering and environmental applications. During jet impact, the free surface of the pool deforms and a cavity is generated. Simultaneously, the free surface of the cavity extends radially outward and forms a rim. Eventually the cavity collapses by means of gas inertia and surface tension. Our numerical investigation using an axisymmetric model in Basilisk C explores cavity collapse dynamics under different impact velocities and gas densities. We validate our model against theory and experiments across a previously unexplored parameter range. Our results show two distinct regimes in the cavity collapse mechanism. By considering forces pulling along the interface, we derive scaling arguments for the time of closure and maximum radius of the cavity, based on the Weber number. For jets with uniform constant velocity from tip to tail and We ⩽ 150 the cavity closure is capillary dominated and happens below the surface (deep seal). In contrast, for We ⩾ 180 the cavity closure happens above the surface (surface seal) and is dominated by the gas entrainment and the pressure gradient that it causes. Additionally, we monitor gas velocity and pressure throughout the impact process. This analysis reveals three critical moments of maximum gas velocity: before impact, at the instant of cavity collapse, and during droplet ejection following cavity collapse. Our results provide information for understanding pollutant transport during droplet impacts on large bodies of water, and other engineering applications, like additive manufacturing, lithography and needle-free injections.

2.
Mater Adv ; 5(5): 1875-1879, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38444934

ABSTRACT

Micromotors have been proposed for applications such as targeted drug delivery, thrombolysis, or sensing. However, single micrormotors are limited in the amount of payload they can deliver or force they can exert. Swarms of micromotors can overcome many of these challenges, however creating and controlling such swarms presents many challenges of its own. In particular, utilizing swarms in fluid flows is of significant importance for biomedical or lab-on-chip applications. Here, the upstream mobility and swarm formation of light driven micromotors in microchannel flows is demonstrated with maximum speeds around 0.1 mm s-1. Additionally, the light actuated microrobots operate in fairly low concentrations of hydrogen peroxide of approximately 1%. The micromotors form swarms at the boundary of the locally applied light pattern and the swarms can be moved by translating the light up or downstream.

3.
Ultrason Sonochem ; 103: 106795, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38359576

ABSTRACT

With this manuscript we aim to initiate a discussion specific to educational actions around ultrasonics sonochemistry. The importance of these actions does not just derive from a mere pedagogical significance, but they can be an exceptional tool for illustrating various concepts in other disciplines, such as process intensification and microfluidics. Sonochemistry is currently a far-reaching discipline extending across different scales of applicability, from the fundamental physics of tiny bubbles and molecules, up to process plants. This review is part of a special issue in Ultrasonics Sonochemistry, where several scholars have shared their experiences and highlighted opportunities regarding ultrasound as an education tool. The main outcome of our work is that teaching and mentorship in sonochemistry are highly needed, with a balanced technical and scientific knowledge to foster skills and implement safe protocols. Applied research typically features the use of ultrasound as ancillary, to merely enhance a given process and often leading to poorly conceived experiments and misunderstanding of the actual effects. Thus, our scientific community must build a consistent culture and monitor reproducible practices to rigorously generate new knowledge on sonochemistry. These practices can be implemented in teaching sonochemistry in classrooms and research laboratories. We highlight ways to collectively provide a potentially better training for scientists, invigorating academic and industry-oriented careers. A salient benefit for education efforts is that sonochemistry-based projects can serve multidisciplinary training, potentially gathering students from different disciplines, such as physics, chemistry and bioengineering. Herein, we discuss challenges, opportunities, and future avenues to assist in designing courses and research programs based on sonochemistry. Additionally, we suggest simple experiments suitable for teaching basic physicochemical principles at the undergraduatelevel. We also provide arguments and recommendations oriented towards graduate and postdoctoral students, in academia or industry to be more entrepreneurial. We have identified that sonochemistry is consistently seen as a 'green' or sustainable tool, which particular appeal to process intensification approaches, including microfluidics and materials science. We conclude that a globally aligned pedagogical initiative and constantly updated educational tools will help to sustain a virtuous cycle in STEM and industrial applications of sonochemistry.


Subject(s)
Education , Ultrasonography
5.
Int J Sports Physiol Perform ; 19(1): 71-79, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37978986

ABSTRACT

PURPOSE: To examine the effects of a neuromuscular training program combining plyometric exercises with acceleration, deceleration, and change-of-direction drills conducted on sand or hard surfaces on the fitness qualities of young male tennis players. METHODS: Thirty-one young male players were allocated to a training group performing 12 training sessions on sand or hard surfaces, during a 6-week period. Tests included linear sprint (10-m acceleration with 5-m split times), change of direction (modified 5-0-5 test), vertical jumps (countermovement jump and the 10/5 repeated-jump test), isometric hip abduction and adduction strength, and dynamic balance (Y-balance test). Perceived training loads and muscle soreness were assessed during the intervention. RESULTS: Both training strategies were similarly effective in improving the analyzed fitness components. Group × time interaction effects were noticed, with countermovement jump (P = .032), repeated-jump test (P = .029), and reactive strength index (P = .008) favoring hard surfaces and 5-m sprint (P = .009), dynamic balance (P < .05), adduction strength (P < .05), and abduction strength (P < .001) indices favoring sand. Furthermore, the sand group promoted greater perceived training loads and muscle soreness (P < .05) than the hard group across the intervention period. CONCLUSION: Neuromuscular training strategies characterized by a relatively low volume (∼35 min), conducted on sand or hard surfaces, promoted similar improvements in the fitness qualities of young tennis players, with selected surface-interaction effects. Training on sand can cause transiently higher training loads and persistently higher muscle soreness, suggesting the need for an adequate familiarization period.


Subject(s)
Athletic Performance , Plyometric Exercise , Tennis , Humans , Male , Athletic Performance/physiology , Muscle Strength/physiology , Myalgia/prevention & control , Physical Fitness/physiology , Sand , Tennis/physiology
9.
J Mater Chem B ; 11(37): 8926-8932, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37435667

ABSTRACT

Mobile microrobots have the potential to transform medical treatments based on therapeutic delivery. Specifically, microrobots are promising candidates for cell transportation in cell-based therapies. Despite recent progress in cellular manipulation by microrobots, there is a significant need to design and fabricate microrobots to advance the field further. In this work, we present a facile approach to manufacturing three-lobed microrobots by a bench-top procedure. The microrobots are actuated by a harmless magnetic field which makes them biofriendly. Chemically, these microrobots are made of organosilica. The microrobots showed equally good control in both the open-loop and closed-loop settings. The three-lobed microrobots have two modes of motion during the open-loop control experiments. We employed these two modes for single-cell transportation. Our results show that the three-lobed microbots are very promising for cell transportation in a fluid.


Subject(s)
Magnetic Fields , Magnetics , Robotic Surgical Procedures
10.
Adv Healthc Mater ; 12(28): e2300939, 2023 11.
Article in English | MEDLINE | ID: mdl-37378647

ABSTRACT

Micro-sized magnetic particles (also known as microrobots [MRs]) have recently been shown to have potential applications for numerous biomedical applications like drug delivery, microengineering, and single cell manipulation. Interdisciplinary studies have demonstrated the ability of these tiny particles to actuate under the action of a controlled magnetic field that not only drive MRs in a desired trajectory but also precisely deliver therapeutic payload to the target site. Additionally, optimal concentrations of therapeutic molecules can also be delivered to the desired site which is cost-effective and safe especially in scenarios where drug dose-related side effects are a concern. In this study, MRs are used to deliver anticancer drugs (doxorubicin) to cancer cells and subsequent cell death is evaluated in different cell lines (liver, prostate, and ovarian cancer cells). Cytocompatibility studies show that MRs are well-tolerated and internalized by cancer cells. Doxorubicin (DOX) is chemically conjugated with MRs (DOX-MRs) and magnetically steered toward cancer cells using the magnetic controller. Time-lapsed video shows that cells shrink and eventually die when MRs are internalized by cells. Taken together, this study confirms that microrobots are promising couriers for targeted delivery of therapeutic biomolecules for cancer therapy and other non-invasive procedures that require precise control.


Subject(s)
Antineoplastic Agents , Doxorubicin , Male , Humans , Doxorubicin/chemistry , Drug Delivery Systems/methods , Antineoplastic Agents/chemistry , Cell Line , Cell Death
11.
MethodsX ; 10: 102171, 2023.
Article in English | MEDLINE | ID: mdl-37122368

ABSTRACT

Electromagnetic systems have been used extensively for the control of magnetically actuated objects, such as in microrheology and micro- robotics research. Therefore, optimizing the design of such systems is highly desirable. Some of the features that are lacking in most cur- rent designs are compactness, portability, and versatility. Portability is especially relevant for biomedical applications in which in vivo or in vitro testing may be conducted in locations away from the laboratory microscope. This document describes the design, fabrication, and imple- mentation of a compact, low-cost, versatile, and user-friendly device (the ModMag) capable of controlling multiple electromagnetic setups, includ- ing a two-dimensional 4-coil configuration, a 3-dimensional Helmholtz configuration, a 2-dimensional magnetic tweezer configuration, and a piezoelectric transducer for producing acoustic waves. All electronics for powering the systems are contained in a compact 10″x6"x3" case, which includes a 10″ touchscreen. A graphical user interface provides additional ease of use. The system can also be controlled remotely, allowing for more flexibility and the ability to interface with other software running on the remote computer such as proprietary camera software. Aside from the software and circuitry, we also describe the design of the electromagnetic coil setups and provide examples of the use of the ModMag in experiments.•Low cost and portable magnetic micro-robot manipulation device•Compatible with the 3 most common coil configurations (traditional, Helmholtz, tweezer).

14.
Article in English | MEDLINE | ID: mdl-36981750

ABSTRACT

The purpose of this study was to examine the effects on upper strength in high-level male players playing four successive wheelchair tennis (WT) matches. Eight international WT players took part in a competition, playing one match per day over four consecutive tournament days. Before and after the match, the maximal isometric handgrip strength was measured on the dominant and non-dominant hand. Additionally, each player was equipped with one radiofrequency and IMU device on their wheelchair to control his activity profile (distance). The results showed significant differences between successive matches, with decreasing dominant handgrip strength (p = 0.02, η2 = 0.043), and there was a significant interaction between successive matches and the accumulated distance (p = 0.013, η2 = 0.049). The pre- and post-match strength values of the dominant hand decreased throughout the matches over a number of days, and post hoc analysis showed differences between the first and fourth matches only in pre-match strength (49.06 ± 6.96 vs. 45.94 ± 7.1; p = 0.045; ES: 1.04) but not in the non-dominant hand. Successive matches caused a decrease in the strength values of the WT players, mainly in the dominant hand. These results should be taken into account in the recovery and prevention of injuries in competitions with successive matches.


Subject(s)
Athletic Performance , Tennis , Wheelchairs , Male , Humans , Hand Strength
16.
J Colloid Interface Sci ; 636: 549-558, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36652830

ABSTRACT

HYPOTHESIS: Needle-free injections using microfluidic jets could be optimized by reducing splashing and controlling injection depth. However, this is impeded by an incomplete understanding on how jet characteristics influence impact outcome. We hypothesise that exploring the relation between microfluidic jet characteristics and substrate shear modulus on impact behavior will assist in predicting and giving insights on the impact outcome on skin and injection endpoints. EXPERIMENTS: To do so, a setup using microfluidic chips, at varying laser powers and stand-off distances, was used to create thermocavitation generated microfluidic jets with ranging characteristics (velocity: 7-77 m/s, diameter: 35-120 µm, Weber-number: 40-4000), which were impacted on substrates with different shear modulus. FINDINGS: Seven impact regimes were found, depending on jet Weber-number and substrate shear modulus, and we identified three thresholds: i) spreading/splashing threshold, ii) dimple formation threshold, and iii) plastic/elastic deformation threshold. The regimes show similarity to skin impact, although the opacity of skin complicated determining the threshold values. Additionally, we found that jet velocity has a higher predictive value for injection depth compared to the Weber-number, and consequently, the jet-diameter. Our findings provide fundamental knowledge on the interaction between microfluidic jets and substrates, and are relevant for optimizing needle-free injections.

17.
Sports Health ; 15(2): 250-259, 2023.
Article in English | MEDLINE | ID: mdl-35350941

ABSTRACT

BACKGROUND: Tennis is one of the most popular sports among youths. At elite levels, a notable increase in injury incidence and a temporary decline in performance may occur when children progress through puberty. However, limited research has explored maturity-associated variations in clinical measurements suggested as predictors of injury and tennis performance in elite youth players. Therefore, the main purpose of this study was to analyze the association between chronological age and maturity status on several measures of neuromuscular capability and physical performance as well as bilateral (interlimb) asymmetries in elite youth tennis players. HYPOTHESIS: Youth tennis players around peak height velocity (PHV) will show higher growth-related impairments or deficits in measures of neuromuscular capability and physical performance than their less (pre-PHV) and more (post-PHV) mature counterparts irrespective of sex. LEVEL OF EVIDENCE: Level 4. METHODS: A total of 68 male (age, 13.7 ± 1.1 years; height, 162.4 ± 9.4 cm; body mass, 51.4 ± 10.3 kg [Mean values ± SD]) and 60 female (age, 13.6 ± 1.1 years; height, 162.8 ± 7.2 cm; body mass, 52.7 ± 7.5 kg [Mean values ± SD]) elite youth tennis players from 2 different age groups (under 13 [U13] and under 15 [U15]) and maturity status (pre-PHV, around PHV, and post-PHV), were tested during national training camps. Tests included the Y Balance Test, isometric hip abduction and adduction strength, hip ranges of motion (ROMs), and countermovement jump (CMJ) height. Bayesian analysis was used to establish any significant between-group differences. RESULTS: Only dynamic balance (in boys; Bayesian factor [BF10] = 88.2) and jump height (in both boys and girls; BF10 >100) were significatively associated with chronological age, whereby the U15 group showed lower Y Balance Test reach distances (-6%; standardized effect size δ = 0.62) but higher CMJ height scores (+18%; δ = 0.73) than the U13 group. Although boys jump higher (+11%; δ = 0.62) and were stronger in isometric hip adduction strength (+14%; δ = 0.92) than girls, the latter had greater hip internal ROM values (+15%; δ = 0.75). Furthermore, relevant maturity-associated effects (BF10 = 34.6) were solely observed for the CMJ test in boys, with the most mature players demonstrating higher jump height scores (+12%; δ = 0.93). Finally, a significant percentage (>25%) of tennis players, independent of sex, demonstrated bilateral asymmetries in hip ROM, hip strength, and jump height values. CONCLUSION: The findings of this study show that in U13 and U15 male and female tennis players, there were neither positive nor negative maturity-associated variations in the clinical measurements analyzed (with the exception of jump height in male players). The high proportion of tennis players showing bilateral asymmetries in dynamic balance, hip ROM, and strength and jump performance highlight the need of future studies to analyze these factors in relation to unilateral tennis-specific adaptations in the musculoskeletal and sensorimotor systems. CLINICAL RELEVANCE: These results may help to better understand how different clinical measurements are associated with the process of growth and maturation in elite youth tennis players and may aid in the design of specific training interventions during these stages of development.


Subject(s)
Athletic Performance , Sports , Tennis , Child , Humans , Male , Adolescent , Female , Bayes Theorem , Muscle Strength , Muscle, Skeletal
18.
Soft Matter ; 19(2): 245-257, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36511786

ABSTRACT

The ballistics of solid and liquid objects (projectiles) impacting on liquids and soft solids (targets) generally results in the creation and expansion of an air cavity inside the impacted object. The dynamics of cavity expansion and collapse depends on the projectile inertia as well as on the target properties. In this paper we study the impact of microfluidic jets generated by thermocavitation processes on a capillary bridge between two parallel planar walls. Different capillary bridge types were studied, Newtonian liquids, viscoelastic liquids and agarose gels. Thus, we compare the cavity formation and collapse between a wide range of material properties. Moreover, we model the critical impact velocity of a jet traversing a capillary bridge type. For agarose gels with a storage modulus of 176 Pa, the critical velocity is well predicted by the model used for liquids. However, the predicted critical velocity for liquids deviates for agarose gels with a storage modulus of 536 Pa and 3961 Pa. Additionally, we show different types of cavity collapse, depending on the Weber number and the capillary bridge properties. We conclude that the type of collapse determines the number and size of entrained bubbles. Furthermore, we study the effects of wettability on the adhesion forces and contact line dissipation. We also conclude that upon cavity collapse, for hydrophobic walls a Worthington jet is energetically favourable. In contrast, for hydrophilic walls, the contact line dissipation is in the same order of magnitude of the energy of the impacted jet, suppressing the Worthington jet formation. Our results provide strategies for preventing bubble entrapment and give an estimation of the cavity dynamics, of relevance for, among others, needle-free injection applications.

19.
J Strength Cond Res ; 37(5): 1096-1103, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36399152

ABSTRACT

ABSTRACT: Fernandez-Fernandez, J, Moreno-Perez, V, Cools, A, Nakamura, FY, Teixeira, AS, Ellenbecker, T, Johansson, F, and Sanz-Rivas, D. The effects of a compensatory training program adding an isoinertial device in the shoulder function on young tennis players. J Strength Cond Res 37(5): 1096-1103, 2023-The aim of this study was to analyze whether a compensatory training program, including isoinertial flywheel training, could reduce shoulder imbalances in a group of asymptomatic young tennis players. After an initial evaluation, 26 young tennis players were assigned to either a supervised flywheel training group (FTG, n = 13) or a control group (CG, n = 13). Shoulder passive internal (IR) and external rotation (ER) range of motion (ROM) as well as shoulder IR and ER maximal isometric strength were measured before and after a 12-week training intervention, performed 3 times per week. After the intervention, results showed significant changes for IR ( p < 0.001, effect size [ES] = 1.83) and ER ( p < 0.001, ES = 1.77) on the dominant (D) side, and IR on the nondominant (ND) side ( p < 0.001, ES = 2.24) in the FTG compared with the CG. Regarding the ROM values, results showed that the FTG achieved significantly greater increases for the IR ROM ( p < 0.001, ES = 3.32) and total ROM (TROM) ( p = 0.004, ES = 1.39) on the D and ND sides (IR ROM: p = 0.002, ES = 1.53; TROM: p < 0.001, ES = 2.35) than the CG. Moreover, the CG displayed larger decrements in ER ROM ( p = 0.016, ES = 1.12) on the ND side after the training period than the FTG. The conducted compensatory training program was effective to increase the ER strength and IR mobility of the FTG players, which led to a reduction in the glenohumeral imbalances.


Subject(s)
Shoulder Joint , Tennis , Humans , Shoulder , Range of Motion, Articular
20.
MRS Adv ; 8(18): 1028-1032, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38384324

ABSTRACT

In this study, we propose a simple and efficient method to fabricate three-lobed nonspherical Janus microrobots. These microrobots can be actuated by a harmless magnetic field. Utilizing organosilica as the material of choice, we leverage its versatile silane chemistry to enable various surface modifications and functionalities. The fabricated microrobots demonstrate two distinct modes of motion, making them well-suited for cell transportation and drug delivery tasks. Their unique shape and motion characteristics allow for precise and targeted movement. Integrating these microrobots into therapeutic delivery platforms can revolutionize medical treatments, offering enhanced precision, efficiency, and versatility in delivering therapies to specific sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...